驅(qū)動(dòng)橋設(shè)計(jì)與分析的理論研究現(xiàn)狀-外文文獻(xiàn)
附 錄 A 外文文獻(xiàn)The present situation of theory research on Drive axle design and analysis With the development of testing technology and improved driving axle in the design process to test the introduction of new technology and a variety of test equipment dedicated to carry out scientific experiments, all aspects of product structure, performance and strength of parts and components, life testing At the same time, extensive use of modern mathematical physics analysis, and assembly of products, parts and components to carry out a full technical analysis, research, and thus drive the development of bridge design theory to scientific experiments and technical analysis is based on the stage.(1) Computer Supported drive axle design and analysis of the theoretical innovation:Computer in the engineering design of the popularization and application, so that the bridge design theory-driven and technology leap in the development of completely different design process. Drive axle structure parameters and the optimization of performance parameters such as selection and matching, the intensity of components accounting and life prediction, simulation of the relevant products or simulation analysis of the art form that is more so on the choice of design and shape, design drawings Drawing will be conducted on the computer. The use of computer tools for analysis, because of its fast computing and large data capacity, we can use more accurate mathematical model of multi-degree of freedom to simulate the driving axle of the campaign in a variety of conditions, the use of modern advanced mathematics methods of analysis, can be obtained more accurate results, which analyzed for a variety of programs designed to work creatively to provide a great convenience. At present, due to the external computer equipment and the achievements of human-computer links, can be the computer's rapid calculation and logic to determine the capacity, high-capacity data storage and efficient data-processing capacity, the calculation results of dynamic image display function and creativity thinking ability and experience, the realization of human-computer dialogue-style semi-automatic design, or product design expert systems, design automation. The design process can be computer-related products on a large amount of data, data retrieval, on the design of the design of high-speed computing, computer screen displays graphics and design calculations; designers can also be used up pen and direct man-machine dialogue language graphic changes to achieve the best design options, and then by computer graphics equipment line drawings drawn products. This use of computers and external devices product design methods, collectively referred to as computer-aided design. CAD and CAM will be the future into CADMAT system will show the usefulness of its huge. (2) basic studies to support the drive axle design and analysis of the theoretical innovation: With the computer design of drive axle in the popularization and application, a number of modern methods of mathematical physics and the basis for new theoretical achievements in the automotive design has become more widely used. The design of modern drive axle, in addition to traditional methods, computer-aided design methods, but also the introduction of the most optimal design, reliability, design, finite element analysis of computer simulation or simulation analysis, modal analysis and other modern design methods and analytical tools. Bridge design and analysis of drive to achieve the current high level of theory, especially the past three decades is more than a century of basic science, applied technology, materials and manufacturing processes result of continuous development and progress as well as design, production and use of long-term accumulation of experience. It is based on the production of large-scale practice, the basis of the theory as a guide to reflect the achievements of contemporary science and technology-driven bridge design software and hardware as a means to meet the needs of society for the purpose, through the use of materials, technology, equipment, tools, testing equipment, test the technical and business achievements in the field of management, continuous development and progress. (3) reverse engineering theory and methods widely used: Driving axle in the field of automated manufacturing, and often involve an enormous amount of complex design and manufacturing and testing surface. Under normal circumstances, first of all applications on the computer computer-aided design and manufacturing technology for the design of product model, and then generate code for processing. With the traditional processing model, compared to reverse engineering a CAD model of characterization of non-existing methods of product design, but through a variety of ways from the physical model was taken from the data re-engineering development models of a product amend. Drive the design and manufacture of axle housing is a very typical reverse engineering methods. (4) the application of rapid prototyping technology :Product innovation is designed to give full play to the designer's creative imagination, using the technical knowledge and skills to carry out the innovative ideas that the principle of a practice, its aim is to creatively design a rich and advanced new products. In the development of traditional design, the process is divided into program design, technical design, process design and product manufacturing. With the development of information technology, product design and development of the scope of the content from the traditional extended to product planning, manufacturing, testing, testing , marketing, as well as the whole process of recovery. Traditional design, the extension of the product development cycle. Rapid prototyping technology is the complete CAD model solid model layer by layer manufacturing technology, rapid prototyping technology to rid itself of the traditional processing methods, the growth of a new processing method to the complex three-dimensional processing is decomposed into a simple combination of two-dimensional processing. Therefore it does not need the use of traditional machine tools and processing tool, and only 10% of traditional processing methods of a 30% and 20% of the working hours of a 30% of the cost of products will be able to directly create and mold samples. Product innovation in the design and development application of rapid prototyping technology, with modern high-tech tools and technology to transform traditional methods of product design and development, to promote design innovation, product innovation, process innovation and management innovation to form a digital, virtual and intelligent , integrated in order to bring about a revolution in product design and development. (5) the application of concurrent engineering to product management and development: Drive Axle Industries has launched a worldwide competition designed to shorten a new product development time, reduce costs, improve quality, increase market competitiveness, manufacturers are increasingly becoming the most important issue to consider. Concurrent Engineering as a modern, advanced product design and development model to address these problems is a good way for countries to the automotive industry has been used. The so-called concurrent engineering, is the integrated, concurrent design of products and related processes of systems engineering, it takes from concept to product design, shape design, manufacture, use, maintenance of the entire process until the end of life of all the relevant factors that can solve the out of touch the design and manufacturing process design changes caused by frequent and long development time, cost of Higher contradictions can be designed to maximize the quality and development efficiency, and increase market competitiveness. Concurrent engineering, the key is the process of the product and its associated parallel implementation of integrated design, manufacturing and assembly-oriented design is an important aspect of concurrent engineering in product development throughout the entire process of design is the key. Innate quality of the product design decisions. Statistics show that products, including raw materials, manufacture, use, maintenance and other costs that 70% of the generalized cost is a decision from the design stage. The objectives of concurrent engineering is as much as possible early in the design stage on the introduction of the manufacture and assembly of the binding process, such as material selection, manufacturing processes, and assembly of such constraints, design changes to make as much as possible in the early stage of product development, and from manufacturing to assembly to reduce the occurrence of adverse situations, when to make a successful product design, product development to avoid the late change in design due to the enormous waste, which on the drive axle design and subAnalysis of the objectives of the theory put forward more demands.