歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

高考數(shù)學(xué)第九章解析幾何9.4直線與圓圓與圓的位置關(guān)系課件文新人教A版.ppt

  • 資源ID:1801894       資源大小:617KB        全文頁數(shù):27頁
  • 資源格式: PPT        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

高考數(shù)學(xué)第九章解析幾何9.4直線與圓圓與圓的位置關(guān)系課件文新人教A版.ppt

9.4 直線與圓、圓與圓的位置關(guān)系,知識梳理,考點自測,1.直線與圓的位置關(guān)系 設(shè)直線l:Ax+By+C=0(A2+B20), 圓:(x-a)2+(y-b)2=r2(r0), d為圓心(a,b)到直線l的距離,聯(lián)立直線和圓的方程,消元后得到的一元二次方程的判別式為.,=,=,知識梳理,考點自測,dr1+r2,無解,d=r1+r2,|r1-r2|dr1+r2,一組實數(shù)解,無解,知識梳理,考點自測,1.當兩圓相交(切)時,兩圓方程(x2,y2項的系數(shù)相同)相減便可得公共弦(公切線)所在的直線方程. 2.過圓x2+y2=r2上一點P(x0,y0)的圓的切線方程為x0x+y0y=r2. 3.過圓(x-a)2+(y-b)2=r2上一點P(x0,y0)的圓的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2. 4.過圓x2+y2=r2外一點M(x0,y0)作圓的兩條切線,則兩切點所在的直線方程為x0x+y0y=r2.,知識梳理,考點自測,1.判斷下列結(jié)論是否正確,正確的畫“”,錯誤的畫“×”. (1)若直線與圓組成的方程組有解,則直線與圓相交或相切. ( ) (2)若兩個圓的方程組成的方程組無解,則這兩個圓的位置關(guān)系為外切. ( ) (3)“k=1”是“直線x-y+k=0與圓x2+y2=1相交”的必要不充分條件. ( ) (4)過圓O:x2+y2=r2外一點P(x0,y0)作圓的兩條切線,切點為A,B,則O,P,A,B四點共圓且直線AB的方程是x0x+y0y=r2. ( ) (5)聯(lián)立兩相交圓的方程,并消掉二次項后得到的二元一次方程是兩圓的公共弦所在的直線方程. ( ),×,×,知識梳理,考點自測,2.“a=1”是“直線l:y=kx+a和圓C:x2+y2=2相交”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件,A,解析:當a=1時,直線l:y=kx+a過定點P(0,1),點P在圓C內(nèi),所以直線l與圓C相交,故充分條件成立;而當a=0時,亦有直線l和圓C相交,故選A.,知識梳理,考點自測,3.(2017寧夏石嘴第三中學(xué)模擬,文6)已知直線y=mx與圓x2+y2-4x+2=0相切,則m的值為( ),D,知識梳理,考點自測,4.(2017遼寧大連一模,文4)直線4x-3y=0與圓(x-1)2+(y-3)2=10相交所得弦長為( ),A,知識梳理,考點自測,5.(2017山東棗莊一模,文11)圓(x-2)2+(y+1)2=4與圓(x-3)2+(y-2)2 =4的位置關(guān)系是 .,相交,考點一,考點二,考點三,直線與圓的位置關(guān)系及其應(yīng)用 例1(1)已知點M(a,b)在圓O:x2+y2=1外,則直線ax+by=1與圓O的位置關(guān)系是( ) A.相切 B.相交 C.相離 D.不確定 (2)(2017北京東城一模,文4)如果過原點的直線l與圓x2+(y-4)2=4切于第二象限,那么直線l的方程是( ),B,B,考點一,考點二,考點三,考點一,考點二,考點三,思考在直線與圓的位置關(guān)系中,求參數(shù)的取值范圍的常用方法有哪些? 解題心得1.判斷直線與圓的位置關(guān)系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較煩瑣,則用代數(shù)法. 2.已知直線與圓的位置關(guān)系求參數(shù)的取值范圍時,可根據(jù)數(shù)形結(jié)合思想利用直線與圓的位置關(guān)系的判斷條件建立不等式(組)解決.,考點一,考點二,考點三,對點訓(xùn)練1(1)(2017廣東佛山一模,文9)對任意aR,曲線y=ex(x2+ax+1-2a)在點P(0,1-2a)處的切線l與圓C:(x-1)2+y2=16的位置關(guān)系是( ) A.相交 B.相切 C.相離 D.以上均有可能 (2)若過點A(4,0)的直線l與圓C:(x-2)2+y2=1有公共點,則直線l的斜率的最小值為 .,A,考點一,考點二,考點三,解析: (1)由題意y'=ex(x2+ax+2x+1-a),當x=0時,y'=1-a,曲線y=ex(x2+ax+1-2a)在點P(0,1-2a)處的切線方程為y-1+2a=(1-a)x,即a(x+2)+y-x-1=0,恒過定點(-2,-1),代入(x-1)2+y2-16,可得9+1-160,即定點在圓內(nèi),切線l與圓C:(x-1)2+y2=16的位置關(guān)系是相交.故選A. (2)設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0,當直線l與圓相切時,k有最大值或最小值.,考點一,考點二,考點三,圓的切線與弦長問題 例2已知點M(3,1),直線ax-y+4=0及圓(x-1)2+(y-2)2=4. (1)求過點M的圓的切線方程; (2)若直線ax-y+4=0與圓相切,求a的值; (3)若直線ax-y+4=0與圓相交于A,B兩點,且弦AB的長為2 ,求a的值.,考點一,考點二,考點三,解 (1)圓心C(1,2),半徑r=2, 當直線的斜率不存在時,方程為x=3. 由圓心C(1,2)到直線x=3的距離d=3-1=2=r知,此時,直線與圓相切. 當直線的斜率存在時,設(shè)方程為y-1=k(x-3),即kx-y+1-3k=0.,考點一,考點二,考點三,考點一,考點二,考點三,思考如何運用圓的幾何性質(zhì)求解圓的切線與弦長問題? 解題心得1.求過某點的圓的切線問題時,應(yīng)首先確定點與圓的位置關(guān)系,然后求切線方程.若點在圓上(即為切點),則過該點的切線只有一條;若點在圓外,則過該點的切線有兩條,此時應(yīng)注意斜率不存在的切線. 2.求直線被圓所截得的弦長時,通??紤]由弦心距、弦長的一半、半徑所構(gòu)成的直角三角形,利用勾股定理來解決問題.,考點一,考點二,考點三,對點訓(xùn)練2(1)(2017安徽馬鞍山一模,文11)過點(3,6)的直線被圓x2+y2=25截得的弦長為8,這條直線的方程是( ) A.3x-4y+15=0 B.3x+4y-33=0 C.3x-4y+15=0或x=3 D.3x+4y-33=0或x=3 (2)已知直線l:x- y+6=0與圓x2+y2=12交于A,B兩點,過點A,B分別作直線l的垂線與x軸交于C,D兩點,則|CD|= .,C,4,考點一,考點二,考點三,考點一,考點二,考點三,圓與圓的位置關(guān)系及其應(yīng)用 例3已知圓C1:(x-a)2+(y+2)2=4與圓C2:(x+b)2+(y+2)2=1外切,則ab的最大值為( ),C,考點一,考點二,考點三,思考在兩圓的位置關(guān)系中,圓心距與兩圓半徑的關(guān)系如何? 解題心得1.判斷兩圓的位置關(guān)系,通常是用幾何法,從圓心距d與兩圓半徑的和、差的關(guān)系入手.如果用代數(shù)法,那么從交點個數(shù)也就是方程組解的個數(shù)來判斷,但有時不能得到準確結(jié)論. 2.兩圓位置關(guān)系中的含參問題有時需要將問題進行化歸,要注重數(shù)形結(jié)合思想的應(yīng)用.,考點一,考點二,考點三,對點訓(xùn)練3(1)若把例3條件中的“外切”改為“內(nèi)切”,則ab的最大值為 . (2)若把例3條件中的“外切”改為“相交”,則公共弦所在的直線方程為 . (3)若把例3條件中的“外切”改為“有四條公切線”,則直線x+y-1=0與圓(x-a)2+(y-b)2=1的位置關(guān)系是 .,(2a+2b)x+3+b2-a2=0,相離,考點一,考點二,考點三,考點一,考點二,考點三,1.直線與圓、圓與圓的位置關(guān)系問題,考慮到圓的幾何性質(zhì),一般用幾何法解決. 2.直線與圓、圓與圓的交點問題,要聯(lián)立直線與圓的方程,或聯(lián)立圓與圓的方程來解決. 3.圓的切線問題: (1)過圓上一點的切線方程的求法是先求切點與圓心連線的斜率,再根據(jù)垂直關(guān)系求得切線斜率,最后通過直線方程的點斜式求得切線方程; (2)過圓外一點的切線方程的求法,一般是先設(shè)出所求切線方程的點斜式,再利用圓心到切線的距離等于半徑列出等式求出所含的參數(shù)即可.若只求出一條切線方程,則斜率不存在的直線也是切線.,考點一,考點二,考點三,4.圓的弦長問題首選幾何法,即利用圓的半徑、弦心距、弦長的一半滿足勾股定理;弦長問題若涉及直線與圓的交點、直線的斜率,則選用代數(shù)法.,1.過圓外一定點作圓的切線,有兩條,若在某種條件下只求出一個結(jié)果,則斜率不存在的直線也是切線. 2.本節(jié)問題的解決多注意數(shù)形結(jié)合,圓與其他知識的交匯問題多注意問題的轉(zhuǎn)化. 3.若圓與圓相交,則可以利用兩個圓的方程作差的方法求得公共弦所在直線的方程.,

注意事項

本文(高考數(shù)學(xué)第九章解析幾何9.4直線與圓圓與圓的位置關(guān)系課件文新人教A版.ppt)為本站會員(sh****n)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!