2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 1.10函數(shù)與方程課時作業(yè) 文(含解析)新人教版.doc
2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 1.10函數(shù)與方程課時作業(yè) 文(含解析)新人教版一、選擇題1(xx·東北三校聯(lián)考)已知函數(shù)f(x)2xx,g(x)log3xx,h(x)x的零點(diǎn)依次為a,b,c,則()AabcBcba Ccab Dbac 解析:在同一平面直角坐標(biāo)系下分別畫出函數(shù)y2x,ylog3x,y,yx的圖象,如圖,觀察它們與yx的交點(diǎn)可知abc.答案:A2(xx·山東青島一模)函數(shù)f(x)2xx32在區(qū)間(0,2)內(nèi)的零點(diǎn)個數(shù)是()A0 B1C2 D3解析:由指數(shù)函數(shù)、冪函數(shù)的性質(zhì)可知,f(x)2xx32在區(qū)間(0,2)內(nèi)單調(diào)遞增,且f(0)10,f(2)100,所以f(0)·f(2)0,即函數(shù)f(x)2xx32在區(qū)間(0,2)內(nèi)有唯一一個零點(diǎn),故選B.答案:B3(xx·河北唐山期末)f(x)2sinxx1的零點(diǎn)個數(shù)為()A4 B5C6 D7解析:2sinxx10,2sinxx1.令h(x)2sinx,g(x)x1,f(x)2sinxx1的零點(diǎn)個數(shù)轉(zhuǎn)化為求兩個函數(shù)圖象的交點(diǎn)個數(shù)h(x)2sinx的周期T2,分別畫出兩個函數(shù)的圖象,如圖所示,h(1)g(1),hg,g(4)32,g(2)32,可知兩個函數(shù)圖象的交點(diǎn)一共5個,f(x)2sinxx1的零點(diǎn)個數(shù)為5.答案:B4(xx·山東威海一模)已知a1,設(shè)函數(shù)f(x)axx4的零點(diǎn)為m,g(x)logaxx4的零點(diǎn)為n,則mn的最大值為()A8 B4C2 D1解析:由f(x)axx40,得ax4x,函數(shù)f(x)axx4的零點(diǎn)為m,即yax,y4x的圖象相交于點(diǎn)(m,4m);由g(x)logaxx40,得logax4x,函數(shù)g(x)logaxx4的零點(diǎn)為n,即ylogax,y4x的圖象相交于點(diǎn)(n,4n)因?yàn)閥ax,ylogax互為反函數(shù),則(m,4m)與(n,4n)關(guān)于直線yx對稱,所以m4n,即mn4,且m0,n0.由mn24,當(dāng)且僅當(dāng)mn2時“”成立,所以mn的最大值為4.故選B.答案:B5(xx·山東德州二模)若函數(shù)f(x)滿足f(x)1,當(dāng)x0,1時,f(x)x,若在區(qū)間(1,1上,g(x)f(x)mx2m有兩個零點(diǎn),則實(shí)數(shù)m的取值范圍是()A0m B0mC.m1 D.m1解析:g(x)f(x)mx2m有兩個零點(diǎn),即曲線yf(x),ymx2m有兩個交點(diǎn)令x(1,0),則x1(0,1),所以f(x1)x1,f(x)1.在同一平面直角坐標(biāo)系中,畫出yf(x),ymx2m的圖象(如圖所示),直線ymx2m過定點(diǎn)(2,0),所以m滿足0m,即0m,故選A.答案:A6(xx·河北石家莊調(diào)研)已知函數(shù)f(x)則方程f(x)ax恰有兩個不同的實(shí)數(shù)根時,實(shí)數(shù)a的取值范圍是(注:e為自然對數(shù)的底數(shù))()A. B.C. D.解析:因?yàn)榉匠蘤(x)ax恰有兩個不同的實(shí)數(shù)根,所以yf(x)與yax有2個交點(diǎn)因?yàn)閍表示直線yax的斜率,當(dāng)x1時,yf(x),設(shè)切點(diǎn)坐標(biāo)為(x0,y0),k,所以切線方程為yy0(xx0),而切線過原點(diǎn),所以y01,x0e,k.所以直線l1的斜率為,直線l2與yx1平行所以直線l2的斜率為,所以實(shí)數(shù)a的取值范圍是.答案:B二、填空題7(xx·上海長寧質(zhì)檢)設(shè)a為非零實(shí)數(shù),偶函數(shù)f(x)x2a|xm|1(xR)在區(qū)間(2,3)上存在唯一零點(diǎn),則實(shí)數(shù)a的取值范圍是_解析:由函數(shù)f(x)為偶函數(shù)可得m0,即f(x)x2a|x|1,f(x)在區(qū)間(2,3)上存在唯一零點(diǎn),由零點(diǎn)存在定理可得f(2)·f(3)0,從而(52a)(103a)0,解得a.答案:8(xx·皖北協(xié)作區(qū)聯(lián)考)已知函數(shù)f(x)若關(guān)于x的函數(shù)g(x)f(x)m有兩個零點(diǎn),則實(shí)數(shù)m的取值范圍是_解析:g(x)f(x)m有兩個零點(diǎn),等價于函數(shù)f(x)與函數(shù)ym的圖象有兩個交點(diǎn),作出函數(shù)的圖象如下:由圖可知m的取值范圍是(1,2答案:(1,29(xx·江蘇卷)已知f(x)是定義在R上且周期為3的函數(shù),當(dāng)x0,3)時,f(x)|x22x|.若函數(shù)yf(x)a在區(qū)間3,4上有10個零點(diǎn)(互不相同),則實(shí)數(shù)a的取值范圍是_解析:作出函數(shù)f(x)|x22x|,x0,3)的圖象(如圖),f(0),當(dāng)x1時,f(x)極大值,f(3),方程f(x)a0在3,4上有10個根,即函數(shù)yf(x)的圖象和直線ya在3,4上有10個交點(diǎn)由于函數(shù)f(x)的周期為3,則直線ya與f(x)的圖象在0,3)上應(yīng)有4個交點(diǎn),因此有a.答案:三、解答題10(xx·鄭州模擬)設(shè)二次函數(shù)f(x)ax2bxc,函數(shù)F(x)f(x)x的兩個零點(diǎn)為m,n(mn)(1)若m1,n2,求不等式F(x)0的解集;(2)若a0,且0xmn,比較f(x)與m的大小解析:(1)由題意知,F(xiàn)(x)f(x)xa(xm)(xn),當(dāng)m1,n2時,不等式F(x)0即為a(x1)(x2)0.當(dāng)a0時,不等式F(x)0的解集為x|x1或x2;當(dāng)a0時,不等式F(x)0的解集為x|1x2(2)f(x)ma(xm)(xn)xm(xm)(axan1),a0,且0xmn,xm0,1anax0,f(x)m0,即f(x)m.11(xx·深圳調(diào)研)已知二次函數(shù)f(x)的最小值為4,且關(guān)于x的不等式f(x)0的解集為x|1x3,xR(1)求函數(shù)f(x)的解析式;(2)求函數(shù)g(x)4lnx的零點(diǎn)個數(shù)解析:(1)f(x)是二次函數(shù),且關(guān)于x的不等式f(x)0的解集為x|1x3,xR,f(x)a(x1)(x3)ax22ax3a,且a0.f(x)minf(1)4a4,a1.故函數(shù)f(x)的解析式為f(x)x22x3.(2)g(x)4lnxx4lnx2(x0),g(x)1.當(dāng)x變化時,g(x),g(x)的取值變化情況如下:x(0,1)1(1,3)3(3,)g(x)00g(x)極大值極小值當(dāng)0x3時,g(x)g(1)40.又因?yàn)間(x)在(3,)單調(diào)遞增,因而g(x)在(3,)上只有1個零點(diǎn)故g(x)在(0,)只有1個零點(diǎn)12(xx·呼倫貝爾調(diào)研)已知f(x)|2x1|ax5(a是常數(shù),aR)(1)當(dāng)a1時,求不等式f(x)0的解集;(2)如果函數(shù)yf(x)恰有兩個不同的零點(diǎn),求a的取值范圍解析:(1)當(dāng)a1時,f(x)|2x1|x5由解得x2;由解得x4.所以f(x)0的解集為x|x2或x4(2)由f(x)0,得|2x1|ax5.作出y|2x1|和yax5的圖象,觀察可以知道,當(dāng)2a2時,這兩個函數(shù)的圖象有兩個不同的交點(diǎn),即函數(shù)yf(x)有兩個不同的零點(diǎn)故a的取值范圍是(2,2)