2019-2020年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十三 排列、組合與二項(xiàng)式定理(含解析).doc
-
資源ID:2744054
資源大小:69.50KB
全文頁(yè)數(shù):4頁(yè)
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2019-2020年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十三 排列、組合與二項(xiàng)式定理(含解析).doc
2019-2020年高三數(shù)學(xué)一輪總復(fù)習(xí) 專題十三 排列、組合與二項(xiàng)式定理(含解析)抓住2個(gè)高考重點(diǎn)重點(diǎn)1 排列與組合1兩個(gè)原理的應(yīng)用 如果完成一件事情有類辦法,這類辦法彼此之間是相互獨(dú)立的,無(wú)論哪一類辦法中的哪一種方法都能完成這件事情,求完成這件事情的方法種數(shù)就用分類加法計(jì)數(shù)原理;如果完成一件事情要分成個(gè)步驟,各個(gè)步驟都是不可或缺的,依次完成所有的步驟才能完成這件事情,而完成每一個(gè)步驟各有若干種不同的方法,求完成這件事情的方法種數(shù)就用分步乘法計(jì)數(shù)原理 從思想方法的角度看,分類加法計(jì)數(shù)原理的運(yùn)用是將問(wèn)題進(jìn)行“分類”思考,分步乘法計(jì)數(shù)原理是將問(wèn)題進(jìn)行“分步”思考,這兩種思想方法貫穿于解決這類應(yīng)用問(wèn)題的始終(1)在處理具體的應(yīng)用問(wèn)題時(shí),首先必須弄清楚是“分類”還是“分步”,其次要搞清楚“分類”和“分步的具體標(biāo)準(zhǔn)分別是什么選擇合理、簡(jiǎn)潔的標(biāo)準(zhǔn)處理問(wèn)題,可以避免計(jì)數(shù)的重復(fù)或遺漏(2)對(duì)于一些比較復(fù)雜的問(wèn)題,既要運(yùn)用分類加法計(jì)數(shù)原理,又要運(yùn)用分步乘法計(jì)數(shù)原理時(shí),我們可以恰當(dāng)?shù)禺?huà)出示意圖或列出表格,使問(wèn)題的分析更直觀、清晰2排列組合應(yīng)用題(1)排列問(wèn)題常見(jiàn)的限制條件及對(duì)策對(duì)于有特殊元素或特殊位置的排列,一般采用直接法,即先排特殊元素或特殊位置相鄰排列問(wèn)題,通常采用“捆綁”法,即可以把相鄰元素看作一個(gè)整體參與其他元素排列對(duì)于元素不相鄰的排列,通常采用“插空”的方法.對(duì)于元素有順序限制的排列,可以先不考慮順序限制進(jìn)行排列,然后再根據(jù)規(guī)定順序的實(shí)情求結(jié)果 求解有約束條件的排列問(wèn)題,通常有正向思考和逆向思考兩種思路正向思考時(shí),通過(guò)分步、分類設(shè)法將問(wèn)題分解;逆向思考時(shí),用集合的觀點(diǎn)看,就是先從問(wèn)題涉及的集合在全集中的補(bǔ)集入手,使問(wèn)題簡(jiǎn)化(2)組合問(wèn)題常見(jiàn)的問(wèn)題及對(duì)策在解組合應(yīng)用題時(shí),常會(huì)遇到“至少”、“最多”等詞,要仔細(xì)審題,理解其含義.有關(guān)幾何圖形的組合問(wèn)題,一定要注意圖形自身對(duì)其構(gòu)成元素的限制,解決這類問(wèn)題常用間接法(或排除法)分組、分配問(wèn)題二者是有區(qū)別的,前者組與組之間只要元素個(gè)數(shù)相同,是不可區(qū)分的,而后者即使兩組元素個(gè)數(shù)相同,但因元素不同,仍然是可區(qū)分的(3)解排列、組合的應(yīng)用題,要注意四點(diǎn)仔細(xì)審題,判斷是組合問(wèn)題還是排列問(wèn)題要按元素的性質(zhì)分類,按事件發(fā)生的過(guò)程進(jìn)行分步深入分析,嚴(yán)密周詳注意分清是乘還是加,既不少也不多,辯證思維,多角度分析,全面考慮,積極運(yùn)用邏輯推理能力,同時(shí)盡可能地避免出錯(cuò)對(duì)于附有條件的比較復(fù)雜的排列、組合應(yīng)用題,要周密分析,設(shè)計(jì)出合理的方案,把復(fù)雜問(wèn)題分解成若干簡(jiǎn)單的基本問(wèn)題后應(yīng)用加法原理或乘法原理來(lái)解決.由于排列、組合問(wèn)題的結(jié)果一般數(shù)目較大,不易直接驗(yàn)證,因此在檢查結(jié)果時(shí),應(yīng)著重檢查所設(shè)計(jì)的解決問(wèn)題的方案是否完備,有無(wú)重復(fù)或遺漏,也可采用多種不同的方案求解,看結(jié)果是否相同,在對(duì)排列、組合問(wèn)題分類時(shí),分類標(biāo)準(zhǔn)應(yīng)統(tǒng)一,否則易出現(xiàn)遺漏或重復(fù)高考??冀嵌冉嵌? 用數(shù)字2,3組成四位數(shù),且數(shù)字2,3至少都出現(xiàn)一次,這樣的四位數(shù)共有_個(gè).(用數(shù)字作答)解析:本題主要考查分步乘法計(jì)數(shù)原理的應(yīng)用因?yàn)樗奈粩?shù)的每個(gè)數(shù)位上都有兩種可能性,其中四個(gè)數(shù)字全是2或3的情況不合題意,所以符合題意的四位數(shù)有個(gè) (間接法)點(diǎn)評(píng):如果用直接法,分類會(huì)很復(fù)雜。角度2某臺(tái)小型晚會(huì)由6個(gè)節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在前兩位,節(jié)目乙不能排在第一位,節(jié)目丙必須排在最后一位,該臺(tái)晚會(huì)節(jié)目演出順序的編排方案共有( B )A. 36種B. 42種 C. 48種 D. 54種解析:分兩類考慮:一類為甲排在第一位共有種,另一類甲排在第二位共有種,故編排方案共有種,故選B.點(diǎn)評(píng):本題主要考查排列組合基礎(chǔ)知識(shí),考查分類與分步計(jì)數(shù)原理.重點(diǎn)2 二項(xiàng)式定理1.二項(xiàng)式定理的通項(xiàng):在二項(xiàng)展開(kāi)式中,叫做二項(xiàng)式的通項(xiàng),是展開(kāi)式的第項(xiàng)2.要正確區(qū)分二項(xiàng)式系數(shù)和展開(kāi)式各項(xiàng)系數(shù).高考??冀嵌冉嵌? 的展開(kāi)式中各項(xiàng)系數(shù)的和為2,則該展開(kāi)式中常數(shù)項(xiàng)為( )A. B. C. D. 解析:令得,故二項(xiàng)式即,二項(xiàng)式的通項(xiàng)為,故知該展開(kāi)式中常數(shù)項(xiàng)為,故選D角度2在的二項(xiàng)展開(kāi)式中,的系數(shù)為( )A B C D解析:由二項(xiàng)式定理得,令,則的系數(shù)為.故選C突破3個(gè)高考難點(diǎn)難點(diǎn)1 裝錯(cuò)信封問(wèn)題的求解對(duì)于裝錯(cuò)信封問(wèn)題,在元素個(gè)數(shù)不多的情況下,可以具體地進(jìn)行操作,以找出其中的方法數(shù),這也是近年來(lái)高考考查計(jì)數(shù)問(wèn)題的一個(gè)命題趨勢(shì).在具體操作中可以在兩個(gè)計(jì)數(shù)原理的指導(dǎo)下,給所安排的元素確定具體位置,在逐步縮小位置個(gè)數(shù)的情況下解決問(wèn)題典例 某中學(xué)高三年級(jí)共有12個(gè)班級(jí),在即將進(jìn)行的月考中,擬安排12位班主任老師監(jiān)考,每班1人,要求有且只有8個(gè)班級(jí)是自己的班主任老師監(jiān)考,則不同的監(jiān)考安排方案共有( )A4 455 種 B495 種 C4 950 種 D7 425種 解析:從12位老師中選出8位,他們各自監(jiān)考自己的班級(jí),方法數(shù)是,剩下的4位老師都不監(jiān)考自己的班級(jí),記4位老師分別為甲、乙、丙、丁,他們各自的班級(jí)分別為A、B、C、D,則甲只能在B、C、D中選一個(gè),有3種方法,假設(shè)甲在B,此時(shí)若乙在A,則丙、丁只能互換班級(jí),若乙在C、D之一,也各有1種方法甲在C、D時(shí)也分別有3種方法,故這時(shí)的安排方法數(shù)是根據(jù)分步乘法計(jì)數(shù)原理,監(jiān)考安排方案共有 種 故選A點(diǎn)評(píng): 題中的4位班主任都不監(jiān)考自己的班級(jí),也是問(wèn)題“一個(gè)人寫了n封信和n個(gè)對(duì)應(yīng)的信封,所有的信都不裝入對(duì)應(yīng)信封”的特例,其方法數(shù)的計(jì)算公式為,題中的情況按照這個(gè)公式進(jìn)行計(jì)算,得難點(diǎn)2 突破涂色問(wèn)題涂色問(wèn)題是由兩個(gè)基本原理和排列組合知識(shí)的綜合運(yùn)用產(chǎn)生的一類問(wèn)題,這類問(wèn)題通常沒(méi)有固定的方法可循,只能按照題目的實(shí)際情況,結(jié)合兩個(gè)基本原理和排列組合的知識(shí)靈活處理其難點(diǎn)是對(duì)相鄰區(qū)域顏色不同的處理,破解的方法是根據(jù)分步乘法計(jì)數(shù)原理逐塊涂色,同時(shí)考慮所用的顏色數(shù)目典例 如圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種顏色現(xiàn)在有4種顏色可供選擇,則不同的著色方法共有_種(以數(shù)字作答)解析:方法一:(以位置為主考慮)第一步涂,有4種方法,第二步涂,有3種方法,第三步涂,有2種方法,第四步涂時(shí)分兩類:第一類用余下的顏色,有1種方法,第五步涂,有1種方法;第二類與區(qū)域同色,有1種方法,第五步涂,有2種方法,所以共有 種方法二:(以顏色為主考慮)分兩類:(1)取4色:將或視為一個(gè)位置計(jì)四個(gè)位置,著色方法有種;(2)取3色:將 , 看成兩個(gè)元素,著色方法有種所以共有著色方法種典例 2 如圖,用6種不同的顏色給圖中的4個(gè)格子涂色,每個(gè)格子涂一種顏色,要求最多使用3種顏色且相鄰的兩個(gè)格子顏色不同,則不同的涂色方法共有_種(用數(shù)字作答)解析:(以顏色為主考慮)若用2種顏色,1,3與2,4分別涂1種顏色,有若用3種顏色,則還有兩個(gè)格子涂一種顏色,可以是1,3,1,4,共三類有 所以共有 種難點(diǎn)3 解決兩個(gè)二項(xiàng)式相乘問(wèn)題求解兩個(gè)二項(xiàng)式乘積中一些特定項(xiàng)或特定項(xiàng)的系數(shù)既是高考中的一個(gè)熱點(diǎn)問(wèn)題,也是一個(gè)難點(diǎn)問(wèn)題,化解這個(gè)難點(diǎn)的方法是用好多項(xiàng)式的乘法規(guī)則弄清楚這些特定項(xiàng)的構(gòu)成規(guī)律在加以解決。典例1 展開(kāi)式中的系數(shù)為_(kāi)解析:依題意,只須計(jì)算中的常數(shù)項(xiàng)與中的含項(xiàng)積的系數(shù),中含項(xiàng)與中含項(xiàng)的積的系數(shù),中含項(xiàng)與中的常數(shù)項(xiàng)的積的系數(shù),然后相加即得.因此,典例2 展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)4246_解析:第一個(gè)展開(kāi)式中的指數(shù)依次是,第二個(gè)展開(kāi)式中的指數(shù)依次是根據(jù)多項(xiàng)式乘法規(guī)則,常數(shù)項(xiàng)只能是第一個(gè)展開(kāi)式中的指數(shù)是的項(xiàng)與第二個(gè)展開(kāi)式中的指數(shù)是對(duì)應(yīng)項(xiàng)的乘積,根據(jù)二項(xiàng)式定理中的通項(xiàng)公式,得所求常數(shù)項(xiàng)為規(guī)避2個(gè)易失分點(diǎn)易失分點(diǎn)1 實(shí)際問(wèn)題意義不清,計(jì)算重復(fù)、遺漏典例 有20個(gè)零件,其中16個(gè)一等品,4個(gè)二等品,若從20個(gè)零件中任意取3個(gè),那么至少有1個(gè)一等品的不同取法有_種.易失分提示:由于對(duì)實(shí)際問(wèn)題中“至少有1個(gè)一等品”意義理解不明,可能導(dǎo)致下面錯(cuò)誤的解法:按分步原理,第一步確保1個(gè)一等品,有種取法;第二步從余下的19個(gè)零件中任意取2個(gè),有種不同的取法,故共有種取法實(shí)際上這種解法是錯(cuò)誤的,我們作如下分析:第一步取出1個(gè)一等品,那么第二步就有3種可能:(1)取出的2個(gè)都是二等品,這時(shí)的取法有種;(2)取出1個(gè)一等品,1個(gè)二等品,因?yàn)槿〕?個(gè)一等品是分步完成的,這2個(gè)一等品的取法就有了先后順序,而實(shí)際上這2個(gè)一等品是沒(méi)有先后順序的,因此這時(shí)的取法就產(chǎn)生了重復(fù),即這時(shí)的取法有種;(3)取出的2個(gè)都是一等品,這時(shí)我們?nèi)〕龅?個(gè)都是一等品了,實(shí)際的取法種數(shù)應(yīng)是種解析:方法一 將“至少有1個(gè)是一等品的不同取法”分三類:“恰有1個(gè)一等品”,“恰有2個(gè)一等品”,“恰有3個(gè)一等品”,有分類計(jì)數(shù)原理得種方法二:考慮其對(duì)立事件“3個(gè)都是二等品”,利用間接法可得符合條件的取法為 種易失分點(diǎn)2 二項(xiàng)式系數(shù)與展開(kāi)式各項(xiàng)系數(shù)相混淆典例1 已知展開(kāi)式中,各項(xiàng)系數(shù)的和與其各項(xiàng)的二項(xiàng)式系數(shù)的和的比值為64,則等于( )A B C D 易失分提示:誤將展開(kāi)式各項(xiàng)系數(shù)與二項(xiàng)式系數(shù)概念分銷,從而導(dǎo)致解題錯(cuò)誤.解析:令,可得展開(kāi)式各項(xiàng)系數(shù)和為,又二項(xiàng)式系數(shù)和為,所以,故選C