2019-2020年高考數(shù)學(xué) 專題41 圓錐曲線中的對稱問題黃金解題模板.doc
-
資源ID:2753080
資源大小:4.26MB
全文頁數(shù):23頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年高考數(shù)學(xué) 專題41 圓錐曲線中的對稱問題黃金解題模板.doc
2019-2020年高考數(shù)學(xué) 專題41 圓錐曲線中的對稱問題黃金解題模板【高考地位】在直線與圓錐曲線的位置關(guān)系中,常出現(xiàn)這樣一類問題:一個圓錐曲線上存在兩點關(guān)于某直線對稱,求方程中參數(shù)的范圍. 這類問題涉及的知識面廣,解題靈活性大,是高考中的一個熱點和難點. 因此,掌握這類問題的解法是必要的和重要的.【方法點評】方法一 判別式法使用情景:圓錐曲線中存在點關(guān)于直線對稱問題解題模板:第一步 假設(shè)這樣的對稱點A、B存在,利用對稱中的垂直關(guān)系設(shè)出兩點A、B所在的直線方程;第二步 聯(lián)立AB所在直線方程與圓錐曲線方程,求出中點C的坐標(biāo);第三步 把C的坐標(biāo)代入對稱直線,求出兩個參數(shù)之間的等式;第四步 利用聯(lián)立后方程的求出其中需求參數(shù)的范圍.例1. 【xx湖南省邵陽市洞口縣第一中學(xué)模擬】在中,頂點所對三邊分別是已知,且成等差數(shù)列.(I )求頂點的軌跡方程;(II) 設(shè)頂點A的軌跡與直線相交于不同的兩點,如果存在過點的直線,使得點關(guān)于對稱,求實數(shù)的取值范圍 【點晴】第(II)題的關(guān)鍵是理解求實數(shù)的取值范圍,其實是要解關(guān)于的不等式,所以要通過已知條件找到該不等式.而通過直線與橢圓有兩個交點可得判別式大于,即可得包含的不等式,而通過該不等式結(jié)合對稱的條件得到的與的關(guān)系式即可求出的取值范圍.例2、已知橢圓的離心率是,且過點()求橢圓的方程()設(shè)橢圓與直線相交于不同的兩點、,又點,當(dāng)時,求實數(shù)的取值范圍【解析】過點,橢圓的方程為 當(dāng)時, , 則解得綜上所述, 的取值范圍是【變式演練1】在拋物線上恒有兩點關(guān)于直線對稱,求的取值范圍【解析】設(shè)、關(guān)于直線對稱,直線方程為,代入得,設(shè)、,中點,則 點在直線上,代入,得,即,解得?!咀兪窖菥?】求證:拋物線=1上不存在關(guān)于直線=對稱的兩點。證明 如圖2-83,若P、Q兩點關(guān)于y=x對稱,可設(shè)P(、)、Q(,)且,、R,則:兩式相減得:+=2,=2,再代入前一式得+2+2=0,其判別式=48<0。所以R這與題設(shè)矛盾。PQ兩點不存在。 方法二 點差法使用情景:圓錐曲線中存在點關(guān)于直線對稱問題解題模板:第一步 設(shè)出兩點和中點坐標(biāo)(x,y);第二步 用“點差法”根據(jù)垂直關(guān)系求出x,y滿足的關(guān)系式;第三步 聯(lián)立直線方程,求出交點,即中點;第四步 由中點位置及對應(yīng)范圍求出參數(shù)取值范圍.例3、若拋物線y=-1上總存在關(guān)于直線x+y=0對稱的兩點,求a的范圍 【變式演練3】如圖傾斜角為的直線經(jīng)過拋物線的焦點,且與拋物線交于兩點()求拋物線的焦點的坐標(biāo)及準(zhǔn)線的方程;()若為銳角,作線段的垂直平分線交軸于點,證明為定值,并求此定值解析如下(I)解:設(shè)拋物線的標(biāo)準(zhǔn)方程為,則,從而因此焦點的坐標(biāo)為,又準(zhǔn)線方程的一般式為從而所求準(zhǔn)線的方程為 解法二:設(shè),直線的斜率為,則直線方程為將此式代入得,故記直線與的交點為,則,故直線的方程為,令,得點的橫坐標(biāo),故從而為定值【高考再現(xiàn)】1. 【xx北京,理18】已知拋物線C:y2=2px過點P(1,1).過點(0,)作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP,ON交于點A,B,其中O為原點.()求拋物線C的方程,并求其焦點坐標(biāo)和準(zhǔn)線方程;()求證:A為線段BM的中點.【答案】()方程為,拋物線C的焦點坐標(biāo)為(,0),準(zhǔn)線方程為.()詳見解析.()由題意,設(shè)直線l的方程為(),l與拋物線C的交點為,.由,得.則,.因為點P的坐標(biāo)為(1,1),所以直線OP的方程為,點A的坐標(biāo)為.直線ON的方程為,點B的坐標(biāo)為.因為,所以.故A為線段BM的中點.【考點】1.拋物線方程;2.直線與拋物線的位置關(guān)系【名師點睛】本題考查了直線與拋物線的位置關(guān)系,考查了轉(zhuǎn)換與化歸能力,當(dāng)看到題目中出現(xiàn)直線與圓錐曲線時,不需要特殊技巧,只要聯(lián)立直線與圓錐曲線的方程,借助根與系數(shù)關(guān)系,找準(zhǔn)題設(shè)條件中突顯的或隱含的等量關(guān)系,把這種關(guān)系“翻譯”出來,有時不一定要把結(jié)果及時求出來,可能需要整體代換到后面的計算中去,從而減少計算量. 2. 【xx天津,理19】設(shè)橢圓的左焦點為,右頂點為,離心率為.已知是拋物線的焦點,到拋物線的準(zhǔn)線的距離為.(I)求橢圓的方程和拋物線的方程;(II)設(shè)上兩點,關(guān)于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.【答案】 (1), .(2),或. 【考點】直線與橢圓綜合問題【名師點睛】圓錐曲線問題在歷年高考都是較有難度的壓軸題,不論第一步利用橢圓的離心率及橢圓與拋物線的位置關(guān)系的特點,列方程組,求出橢圓和拋物線方程,還是第二步聯(lián)立方程組求出點的坐標(biāo),寫直線方程,利用面積求直線方程,都是一種思想,就是利用大熟地方法解決幾何問題,坐標(biāo)化,方程化,代數(shù)化是解題的關(guān)鍵.3. 【xx高考四川文科】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點時,定義P的“伴隨點”為;當(dāng)P是原點時,定義P的“伴隨點”為它自身,現(xiàn)有下列命題:若點A的“伴隨點”是點,則點的“伴隨點”是點A.單元圓上的“伴隨點”還在單位圓上.若兩點關(guān)于x軸對稱,則他們的“伴隨點”關(guān)于y軸對稱若三點在同一條直線上,則他們的“伴隨點”一定共線.其中的真命題是 .【答案】 4. 【xx高考新課標(biāo)1文數(shù)】(本小題滿分12分)在直角坐標(biāo)系中,直線l:y=t(t0)交y軸于點M,交拋物線C:于點P,M關(guān)于點P的對稱點為N,連結(jié)ON并延長交C于點H.(I)求;(II)除H以外,直線MH與C是否有其它公共點?說明理由.【答案】(I)2(II)沒有 【解答】試題分析:先確定,的方程為,代入整理得,解得,得,由此可得為的中點,即.(II)把直線的方程,與聯(lián)立得,解得,即直線與只有一個公共點,所以除以外直線與沒有其它公共點.考點:直線與拋物線【名師點睛】高考解析幾何解答題大多考查直線與圓錐曲線的位置關(guān)系,直線與圓錐曲線的位置關(guān)系是一個很寬泛的考試內(nèi)容,主要由求值、求方程、求定值、最值、求參數(shù)取值范圍等幾部分組成;解析幾何中的證明問題通常有以下幾類:證明點共線或直線過定點;證明垂直;證明定值問題.其中考查較多的圓錐曲線是橢圓與拋物線,解決這類問題要重視方程思想、函數(shù)思想及化歸思想的應(yīng)用.【反饋練習(xí)】1. 【xx云南昆明一中一?!恳阎獎狱c滿足: .(1)求動點的軌跡的方程;(2)設(shè)過點的直線與曲線交于兩點,點關(guān)于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標(biāo).【答案】(1);(2)直線過定點 ,證明見解析. 【解析】試題分析:(1)動點到點, 的距離之和為,且,所以動點的軌跡為橢圓,從而可求動點的軌跡的方程;(2)直線的方程為: ,由 得,根據(jù)韋達(dá)定理可得,直線的方程為,即可證明其過定點.試題解析:(1)由已知,動點到點, 的距離之和為,且,所以動點的軌跡為橢圓,而, ,所以,所以,動點的軌跡的方程: . 2【xx江西宜春六校聯(lián)考】橢圓: 的離心率為,過右焦點垂直于軸的直線與橢圓交于, 兩點且,又過左焦點任作直線交橢圓于點()求橢圓的方程;()橢圓上兩點, 關(guān)于直線對稱,求面積的最大值【答案】();().()依題意直線不垂直軸,當(dāng)直線的斜率時,可設(shè)直線的方程為(),則直線的方程為由得,即,設(shè)的中點為,則, ,點在直線上,故,此時與矛盾,故時不成立當(dāng)直線的斜率時, , (, ),的面積,面積的最大值為,當(dāng)且僅當(dāng)時取等號3【xx黑龍江齊齊哈爾一?!咳鐖D,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, ,四邊形的面積是四邊形的面積的2倍. (1)求橢圓的方程;(2)過橢圓的右焦點且垂直于軸的直線交橢圓于兩點, 是橢圓上位于直線兩側(cè)的兩點.若直線過點,且,求直線的方程.【答案】(1);(2) (2)由(1)易知點的坐標(biāo)分別為.因為,所以直線的斜率之和為0. 設(shè)直線的斜率為,則直線的斜率為, ,直線的方程為,由 可得,同理直線的方程為, 可得, ,滿足條件的直線的方程為,即為.4【xx江西宜春六校聯(lián)考】已知點,點在軸上,動點滿足,且直線與軸交于點, 是線段的中點()求動點的軌跡的方程;()若點是曲線的焦點,過的兩條直線, 關(guān)于軸對稱,且交曲線于、兩點, 交曲線于、兩點, 、在第一象限,若四邊形的面積等于,求直線, 的方程【答案】();(), ()由()知,設(shè)直線: ,則得, ,依題意可知,四邊形是等腰梯形,由,即,所以直線, 的方程分別為, 5【xx天津市耀華中學(xué)模擬】中心在原點,焦點在軸上的橢圓,下頂點,且離心率.()求橢圓的標(biāo)準(zhǔn)方程;()經(jīng)過點且斜率為的直線交橢圓于, 兩點.在軸上是否存在定點,使得恒成立?若存在,求出點坐標(biāo);若不存在,說明理由.由于對任意恒成立,因此恒成立恒成立即恒成立,因此綜上,存在點滿足題意.6【xx浙東北聯(lián)盟】已知, 為拋物線上的兩個動點,其中,且(1)求證:線段的垂直平分線恒過定點,并求出點坐標(biāo);(2)求面積的最大值 7. 已知橢圓()的離心率是,過點的動直線與橢圓相交于, 兩點,當(dāng)直線平行于軸時,直線被橢圓截得的線段長為(1)求橢圓的方程;(2)當(dāng)時,求直線的方程;(3)記橢圓的右頂點為,點()在橢圓上,直線交軸于點,點與點關(guān)于軸對稱,直線交軸于點問: 軸上是否存在點,使得(為坐標(biāo)原點)?若存在,求點坐標(biāo);若不存在,說明理由【解析】(1)由已知,點在橢圓上,因此解得所以橢圓的方程為 (3)假設(shè)軸上存在點,使得,“存在點使得”等價于“存在點使得”即滿足,因為,所以,直線的方程為,所以,即,因為點與點關(guān)于軸對稱,所以同理可得,因為, , ,所以,所以或,故在軸上存在點,使得,點的坐標(biāo)為或8. 【xx四川省成都市第七中學(xué)模擬】已知橢圓: 的左、右焦點分別為 且離心率為, 為橢圓上三個點, 的周長為,線段的垂直平分線經(jīng)過點.(1)求橢圓的方程;(2)求線段長度的最大值. 點睛:圓錐曲線的大題一般第一問都是求曲線方程,第二問求一些最值范圍問題;或者證明定值定點問題;求參數(shù)范圍問題;做這些題目時要注意,一是轉(zhuǎn)化題目中的條件,比如:垂直平分,實質(zhì)就是斜率的關(guān)系;二是注意計算中能否因式分解,提公因式等技巧。9. 【xx河南鄭州市第一中模擬】已知橢圓: 的離心率與雙曲線: 的離心率互為倒數(shù),且經(jīng)過點 (1)求橢圓的標(biāo)準(zhǔn)方程;(2)如圖,已知是橢圓上的兩個點,線段的中垂線的斜率為且與交于點, 為坐標(biāo)原點,求證: 三點共線 (2)因為線段線段的中垂線的斜率為,所以線段所在直線的斜率為.所以可設(shè)線段所在直線的方程為,設(shè)點,聯(lián)立,消去,并整理得,