6第六章單因素方差分析
2 教 學(xué) 要 求v了 解 方 差 分 析 的 意 義v掌 握 方 差 分 析 的 方 法 3 教 學(xué) 內(nèi) 容第 一 節(jié) 方 差 分 析 的 基 本 原 理第 二 節(jié) 單 因 素 方 差 分 析第 三 節(jié) 多 重 比 較第 四 節(jié) 方 差 分 析 應(yīng) 具 備 的 條 件 4 教 學(xué) 內(nèi) 容第 一 節(jié) 方 差 分 析 的 基 本 原 理一 、 方 差 分 析 的 概 念二 、 方 差 分 析 的 意 義三 、 方 差 分 析 的 基 本 原 理 5 方 差 分 析 的 概 念方 差 分 析 ( Analysis Of Variance, ANOVA) 又 稱(chēng) 變 量 分 析 或 F檢 驗(yàn) , 比 較 組 間 方差 是 否 可 以 用 組 內(nèi) 方 差 來(lái) 進(jìn) 行 解 釋 , 從 而 判 斷若 干 組 樣 本 是 否 來(lái) 自 同 一 總 體 的 檢 驗(yàn) 方 法 。方 差 分 析 是 由 英 國(guó) 著 名 統(tǒng) 計(jì) 學(xué) 家R.A.Fisher于 1923年 提 出 的 。 方 差 分 析 的 基 本 原 理 6 方 差 分 析 的 最 終 統(tǒng) 計(jì) 推 斷 和 假 設(shè) 檢 驗(yàn) 均 依 靠 F分 布 , 所 以 適 當(dāng) 了 解 一 下 F分 布 的 特 點(diǎn) 十 分 有 益 。F分 布 F分 布 是 英 國(guó) 統(tǒng) 計(jì) 學(xué)家 Fisher和 Snedecor提 出 的 。 為 了 表 示 對(duì) Fisher的 尊重 , Snedecor將 其 命 名 為 F分 布 。 方 差 分 析 也 主 要 是 由Fisher推 導(dǎo) 出 來(lái) 的 , 也 叫 F檢 驗(yàn) 。 7 優(yōu) : 可 以 一 次 檢 驗(yàn) 多 組 樣 本 , 避 免了 t檢 驗(yàn) 一 次 只 能 比 較 兩 組 的 缺 陷 。缺 : 只 能 反 映 出 各 組 樣 本 中 存 在 著差 異 , 但 具 體 是 哪 一 組 樣 本 存 在 差 異 ,無(wú) 法 進(jìn) 行 判 定 。方 差 分 析 優(yōu) 缺 點(diǎn)方 差 分 析 的 基 本 原 理 8 方 差 分 析 的 意 義其 目 的 是 推 斷 兩 組 或 多 組資 料 的 總 體 均 數(shù) 是 否 相 同 , 檢驗(yàn) 兩 個(gè) 或 多 個(gè) 樣 本 均 數(shù) 的 差 異是 否 有 統(tǒng) 計(jì) 學(xué) 意 義 。 方 差 分 析 的 基 本 原 理 9 方 差 分 析 中 的 術(shù) 語(yǔ)1. 因 素2. 水 平3. 主 效 應(yīng)4. 交 互 效 應(yīng) 5. 處 理6. 固 定 因 素7. 隨 機(jī) 因 素8. 誤 差 方 差 分 析 的 基 本 原 理 10 方 差 分 析 中 的 術(shù) 語(yǔ)1.因 素 : 可 能 影 響 試 驗(yàn) 結(jié) 果 , 且 在 試驗(yàn) 中 被 考 查 的 原 因 或 原 因 組 合 。 有時(shí) 也 可 稱(chēng) 為 因 子 。 例 如 溫 度 、 濕 度 、藥 物 種 類(lèi) 等 。2.水 平 : 因 素 在 試 驗(yàn) 或 觀 測(cè) 中 所 處 的狀 態(tài) 。 例 如 溫 度 的 不 同 值 , 藥 物 的不 同 濃 度 等 。 方 差 分 析 的 基 本 原 理 11 方 差 分 析 中 的 術(shù) 語(yǔ)3. 主 效 應(yīng) : 反 映 一 個(gè) 因 素 各 水 平 的 平均 數(shù) 之 差 異 的 一 種 度 量 。 一 個(gè) 因 子第 i水 平 上 所 有 數(shù) 據(jù) 的 平 均 與 全 部數(shù) 據(jù) 的 平 均 之 差 , 稱(chēng) 為 該 因 子 第 i水 平 的 主 效 應(yīng) 。4. 交 互 效 應(yīng) : 由 兩 個(gè) 或 更 多 因 素 之 間水 平 搭 配 而 產(chǎn) 生 的 差 異 的 一 種 度 量 。 方 差 分 析 的 基 本 原 理 12 方 差 分 析 中 的 術(shù) 語(yǔ)5. 處 理 : 實(shí) 驗(yàn) 中 實(shí) 施 的 因 子 水 平 的 一 個(gè) 組 合 。6. 固 定 因 素 : 該 因 素 的 水 平 可 準(zhǔn) 確 控 制 , 且 水平 固 定 后 , 其 效 應(yīng) 也 固 定 。 例 如 溫 度 , 化 學(xué)藥 物 的 濃 度 , 動(dòng) 植 物 的 品 系 , 等 等 。7. 隨 機(jī) 因 素 : 該 因 素 的 水 平 不 能 嚴(yán) 格 控 制 , 或雖 水 平 能 控 制 , 但 其 效 應(yīng) 仍 為 隨 機(jī) 變 量 。 例如 動(dòng) 物 的 窩 別 ( 遺 傳 因 素 的 組 合 ) , 農(nóng) 家 肥的 效 果 等 等 。 方 差 分 析 的 基 本 原 理 13 方 差 分 析 中 的 術(shù) 語(yǔ)8.誤 差 : 除 了 實(shí) 驗(yàn) 中 所 考 慮 的 因 素 之 外 ,其 他 原 因 所 引 起 的 實(shí) 驗(yàn) 結(jié) 果 的 變 化 。 它可 分 為 系 統(tǒng) 誤 差 和 隨 機(jī) 誤 差 : 方 差 分 析 的 基 本 原 理v系 統(tǒng) 誤 差 : 誤 差 的 組 成 部 分 , 在 對(duì) 同 一 被 測(cè) 量 的多 次 測(cè) 試 中 , 它 保 持 不 變 或 按 某 種 規(guī) 律 變 化 。 它的 原 因 可 為 已 知 , 也 可 為 未 知 , 但 均 應(yīng) 盡 量 消 除 。v隨 機(jī) 誤 差 : 誤 差 的 組 成 部 分 , 在 對(duì) 同 一 被 測(cè) 量 的多 次 測(cè) 試 中 , 它 受 偶 然 因 素 的 影 響 而 以 不 可 預(yù) 知的 方 式 變 化 。 它 無(wú) 法 消 除 或 修 正 。 14 計(jì) 算 觀 察 值 的 組 間 方 差 和 組 內(nèi)方 差 , 并 計(jì) 算 兩 者 的 比 值 , 如 果 該比 值 比 較 小 , 說(shuō) 明 組 間 方 差 與 組 內(nèi)方 差 比 較 接 近 , 組 間 方 差 可 以 用 組內(nèi) 方 差 來(lái) 解 釋 , 從 而 說(shuō) 明 組 間 差 異不 存 在 。 方 差 分 析 的 基 本 原 理方 差 分 析 的 基 本 原 理 15 教 學(xué) 內(nèi) 容第 二 節(jié) 單 因 素 方 差 分 析一 、 不 同 處 理 效 應(yīng) 與 不 同 模 型二 、 平 方 和 及 自 由 度 的 分 解三 、 簡(jiǎn) 化 計(jì) 算四 、 單 因 素 方 差 分 析 的 步 驟五 、 單 因 素 方 差 分 析 的 應(yīng) 用 實(shí) 例 X1 X2 X3 Xi Xa1 x11 x21 x31 xi1 xa12 x12 x22 x32 xi2 xa23 x13 x23 x33 xi3 xa3j x1j x2j x3j xij xajn x1n x2n x3n xin xan平 均 數(shù) 單 因 素 方 差 分 析 xij 表 6-1 每 組 具 n個(gè) 觀 測(cè) 值 的 a組 樣 本 符 號(hào) 表 1x 2x 3x ix ax 17 不 同 處 理 效 應(yīng) 與 不 同 模 型單 因 素 方 差 分 析 18 平 方 和 及 自 由 度 的 分 解方 差 分 析 的 基 本 思 想 ,就 是 將 總 變 差 分 解 為 各 構(gòu) 成部 分 之 和 , 然 后 對(duì) 它 們 作 統(tǒng)計(jì) 檢 驗(yàn) 。 單 因 素 方 差 分 析 平 方 和 及 自 由 度 的 分 解方 差 與 標(biāo) 準(zhǔn) 差 都 可 以 用 來(lái) 度 量 樣 本的 變 異 程 度 。 在 方 差 分 析 中 是 用 樣 本 方差 即 均 方 (mean squares)來(lái) 度 量 資 料 的變 異 程 度 的 。表 6-1中 全 部 觀 察 值 的 總 變 異 可 以用 總 均 方 來(lái) 度 量 , 處 理 間 變 異 和 處 理 內(nèi)變 異 分 別 用 處 理 間 均 方 和 處 理 內(nèi) 均 方 來(lái)度 量 。 平 方 和 及 自 由 度 的 分 解將 總 變 異 分 解 為 處 理 間 變 異 和 處 理 內(nèi) 變 異 ,就 是 要 將 總 均 方 分 解 為 處 理 間 均 方 和 處 理 內(nèi) 均方 。 這 種 分 解 是 通 過(guò) 將 總 均 方 式 中 的 分 子 稱(chēng) 為 總 離 均 差 平 方 和 , 簡(jiǎn) 稱(chēng) 為 總 平 方 和 , 分解 成 處 理 間 平 方 和 與 處 理 內(nèi) 平 方 和 兩 部 分 ;將 總 均 方 式 中 的 分 母 稱(chēng) 為 總 自 由 度 ,分 解 成 處 理 間 自 由 度 與 處 理 內(nèi) 自 由 度 兩 部 分 來(lái)實(shí) 現(xiàn) 的 。 總 平 方 和 的 分 解 在 表 6-1中 , 反 映 全 部 觀 察 值 總變 異 的 總 平 方 和 是 各 觀 察 值 與 總 平均 數(shù) 的 離 均 差 平 方 和 , 記 為 SST。即 ai nj ijT xxSS 1 1 2.)( 22 平 方 和 及 自 由 度 的 分 解 單 因 素 方 差 分 析 ai nj iiij ai nj ij xxxx xx1 1 2.1 1 2 .)( .)( ai nj ai nj iiijai nj iiijai nj iiiijiij xxxxxxxx xxxxxxxx1 1 1 11 1 22.1 1 2.2. .)(2.)()( .)(.)(2)( 23 平 方 和 及 自 由 度 的 分 解 單 因 素 方 差 分 析 0 )(.)( )(.)( .)()(1 .1 1 . .1 1 . ai iiiai nj iiji iai nj iij xxxx xxxx xxxx由 于 24 平 方 和 及 自 由 度 的 分 解 單 因 素 方 差 分 析 ai nj ji xx1 1 2.)( ai ai nj iiji xxxxn 1 1 1 2.2. )(.)( 其 中稱(chēng) 為 處 理 間 平 方 和 , 記 為 SSA, 即而稱(chēng) 為 處 理 內(nèi) 平 方 和 或 誤 差 平 方 和 , 記 為SS e, 即 ai i xxn 1 2. .)( ai iA xxnSS 1 2. .)( ai nj iij xx1 1 2.)( ai nj iije xxSS 1 1 2.)( 26 平 方 和 及 自 由 度 的 分 解 單 因 素 方 差 分 析用 符 號(hào) 表 示 , 上 式 可 寫(xiě) 成 :SST = SSA + SSe 其 中 符 號(hào) 的 意 義 為 :SST: 總 平 方 和 ;SSA: 處 理 間 平 方 和 ;SSe: 誤 差 平 方 和 , 或 處 理 內(nèi) 平 方 和 。 (二 )總 自 由 度 的 分 解 在 計(jì) 算 總 平 方 和 時(shí) , 資 料 中 的 各 個(gè) 觀 察 值 要受 這 一 條 件 約 束 , 總 自 由 度 等 于資 料 中 觀 察 值 的 總 個(gè) 數(shù) 減 一 , 即 an-1。 總 自 由 度 記 為 dfT, 則 dfT =an-1 。 在 計(jì) 算 處 理 間 平 方 和 時(shí) , 各 處 理 均 數(shù) 要 受 這 一 條 件 的 約 束 , 故 處 理 間 自 由 度 為處 理 數(shù) 減 一 , 即 a-1。 處 理 間 自 由 度 記 為 df A , 則 dfA=a-1。 0)(1 1 . ai nj iij xx0.)( 1 . ai i xx 在 計(jì) 算 處 理 內(nèi) 平 方 和 時(shí) , 要 受 a個(gè) 條 件 的 約 束 ,即 , i=1,2,.a。 故 處 理 內(nèi) 自 由 度為 資 料 中 觀 察 值 的 總 個(gè) 數(shù) 減 a, 即 an-a。 處 理 內(nèi) 自 由 度 記 為 dfe, 則 dfe=an-a=a(n-1)。 因 為 an-1=(a-1)+(an-a)=(a-1)+a(n-1) 所 以 dfT= dfA+ dfe綜 合 以 上 各 式 得 : 0)( ixx ATeAT dfdfdf adf andf 11 29 平 方 和 及 自 由 度 的 分 解它 們 的 自 由 度 分 別 為 an1, a1和 a(n1), 即 自 由 度 也作 了 相 應(yīng) 分 解 :an 1 = a 1 + a(n 1) 單 因 素 方 差 分 析 dfT dfA dfe 30 平 方 和 及 自 由 度 的 分 解令 稱(chēng) 為 誤 差 均 方 稱(chēng) 為 處 理 間 均 方 )1( naSSMS ee 1 aSSMS AA單 因 素 方 差 分 析 31 簡(jiǎn) 化 計(jì) 算 單 因 素 方 差 分 析 ai nj ijT naxxSS 1 1 2.2 ai iA naxxnSS 1 2.2.1 ATe SSSSSS 32 簡(jiǎn) 化 計(jì) 算 單 因 素 方 差 分 析其 中 通 常 稱(chēng) 為 校 正 項(xiàng) ( correction) ,用 C表 示nax2. 33 單 因 素 方 差 分 析 的 步 驟單 因 素 方 差 分 析 34 建 立 原 假 設(shè) “ H0: 各 組 平 均 數(shù) 相 等 ” 構(gòu) 造 統(tǒng) 計(jì) 量 “ F 組 間 均 方 組 內(nèi) 均 方 ” 在 計(jì) 算 組 間 均 方 時(shí) , 使 用 自 由 度 為 ( a-1) , 計(jì) 算 組 內(nèi) 均方 時(shí) , 使 用 自 由 度 為 a( n-1) 。 F滿(mǎn) 足 第 一 自 由 度 為 ( a-1) , 第 二 自 由 度 為 a( n-1)的 F分 布 。 查 表 。 推 斷 : 若 F值 大 于 0.05臨 界 值 , 則 拒 絕 原 假 設(shè) , 認(rèn) 為 各組 平 均 數(shù) 存 在 差 異 。 結(jié) 論 。 單 因 素 方 差 分 析 35 單 因 素 方 差 分 析 的 應(yīng) 用 實(shí) 例單 因 素 方 差 分 析 36 例 6.1p104例 8.1單 因 素 方 差 分 析 單 因 素 方 差 分 析 序 號(hào) 品 系I II III IV V1 -0.4 -0.5 2.8 6.8 4.22 0.3 0.3 1.3 7.1 3.23 -0.2 -0.4 2.1 5.0 4.84 1.0 -1.3 1.8 4.1 3.35 0.8 -1.1 3.5 6.0 2.5表 6-2 5個(gè) 小 麥 品 系 株 高 ( cm) 調(diào) 查 結(jié) 果 單 因 素 方 差 分 析 序 號(hào) 品 系I II III IV V1 -0.4 -0.5 2.8 6.8 4.22 0.3 0.3 1.3 7.1 3.23 -0.2 -0.4 2.1 5.0 4.84 1.0 -1.3 1.8 4.1 3.35 0.8 -1.1 3.5 6.0 2.5 總 和xi. 1.5 -3.0 11.5 29.0 18.0 57.0 x2 i. 2.25 9.00 132.25 841.00 324.00 1308.50 x2ij 1.93 3.4 29.43 174.46 68.06 277.28 39 2. 計(jì) 算 SST、 SSA 、 SSe單 因 素 方 差 分 析 96.129)5)(5(57.1 22. naxC計(jì) 算 校 正 項(xiàng) ai nj ijT CxSS 1 1 2 ai iA CxnSS 1 2.1 ATe SSSSSS 4032.147 96.12928.277 1 1 2 ai nj ijT CxSS單 因 素 方 差 分 析 4174.131 96.1295 50.13081 1 2. ai iA CxnSS單 因 素 方 差 分 析 4258.15 74.13132.147 ATe SSSSSS單 因 素 方 差 分 析 43 3. 將 以 上 結(jié) 果 列 成 方 差 分 析 表變 差 來(lái) 源 平 方 和 自 由 度 均 方 F品 系 間 131.74 4 32.94 42.23*誤 差 15.58 20 0.78總 和 147.32 24 單 因 素 方 差 分 析 44 作 業(yè) 10/12p1178.2 45 46 Spss操 作品 系I II III IV V64.6 64.5 67.8 71.8 69.265.3 65.3 66.3 72.1 68.264.8 64.6 67.1 70.0 69.866.0 63.7 66.8 69.1 68.365.8 63.9 68.5 71.0 67.5 株 高 47 48ANOVA株高(cm) 131.740 4 32.935 42.279 .00015.580 20 .779147.320 24Between GroupsWithin GroupsTotal Sum ofSquares df Mean Square F Sig. Test of Homogeneity of Variances 株高(cm) 1.362 4 20 .282 Levene Statistic df1 df2 Sig. 49 Excel操 作品 系I II III IV V64.6 64.5 67.8 71.8 69.265.3 65.3 66.3 72.1 68.264.8 64.6 67.1 70.0 69.866.0 63.7 66.8 69.1 68.365.8 63.9 68.5 71.0 67.5 株 高 50 51 52 53 54 55 Excel操 作將 抗 生 素 注 入 人 體 會(huì) 產(chǎn) 生抗 生 素 與 血 漿 蛋 白 質(zhì) 結(jié) 合的 現(xiàn) 象 , 以 致 減 少 了 藥 效 。右 表 列 出 了 5種 常 用 的 抗生 素 注 入 到 牛 的 體 內(nèi) 時(shí) ,抗 生 素 與 血 漿 蛋 白 質(zhì) 結(jié) 合的 百 分 比 。 現(xiàn) 需 要 在 顯 著性 水 平 a=0.05下 檢 驗(yàn) 這 些百 分 比 的 均 值 有 無(wú) 顯 著 的差 異 。 設(shè) 各 總 體 服 從 正 態(tài)分 布 , 且 方 差 相 同 。 青 霉 素 四 環(huán) 素 鏈 霉 素 紅 霉 素 氯 霉 素29.6 27.3 5.8 21.6 29.224.3 32.6 6.2 17.4 32.828.5 30.8 11.0 18.3 25.032.0 34.8 8.3 19.0 24.2 56 57 58 59 教 學(xué) 要 求v了 解 方 差 分 析 的 意 義v掌 握 方 差 分 析 的 方 法 60 教 學(xué) 內(nèi) 容第 一 節(jié) 方 差 分 析 的 基 本 原 理第 二 節(jié) 單 因 素 方 差 分 析第 三 節(jié) 多 重 比 較第 四 節(jié) 方 差 分 析 應(yīng) 具 備 的 條 件 61 第 三 節(jié) 多 重 比 較拒 絕 H0時(shí) , 并 不 意 味 著 所有 處 理 間 均 存 在 差 異 。 為 弄 清哪 些 處 理 間 有 差 異 , 需 對(duì) 所 有水 平 作 一 對(duì) 一 的 比 較 , 即 多 重比 較 。 常 用 的 多 重 比 較 方 法 有以 下 幾 種 : 62方 差 分 析 的 基 本 原 理 X1 X2 X3 Xi Xa1 x11 x21 x31 xi1 xa12 x12 x22 x32 xi2 xa23 x13 x23 x33 xi3 xa3 j x1j x2j x3j xij xaj n x1n x2n x3n xin xan平 均 數(shù) 63 多 重 比 較一 、 LSD法二 、 Duncan檢 驗(yàn) 多 重 比 較 64 LSD法最 小 顯 著 差 數(shù) (LSD)法 :實(shí) 際 就 是 用 t檢 驗(yàn) 對(duì) 所 有 平 均數(shù) 作 一 對(duì) 一 對(duì) 的 檢 驗(yàn) 。 一 般情 況 下 各 水 平 重 復(fù) 數(shù) n相 等 ,用 MSe作 為 2的 估 計(jì) 量 , 可得 : 多 重 比 較 65 LSD法 多 重 比 較 nMSnnMSS ejiexx ji 2)11()( 66 LSD法統(tǒng) 計(jì) 量 為 : 多 重 比 較 )(/2 aantnMSxxt e ji 67 LSD法因 此 當(dāng) 時(shí) , 差 異 顯 著 。 t分 位 數(shù) 的 自 由 度 df = a(n-1)。 多 重 比 較 nMStxx eji /205.0 68 LSD法 多 重 比 較即 為 最 小 顯 著 差 數(shù) , 記 為 LSD。 nMSt e /205.0 69 LSD法所 有 比 較 僅 需 計(jì) 算 一 個(gè) LSD, 應(yīng) 用 很方 便 。 但 由 于 又 回 到 了 多 次 重 復(fù) 使 用 t檢 驗(yàn)的 方 法 , 會(huì) 大 大 增 加 犯 第 一 類(lèi) 錯(cuò) 誤 的 概 率 。為 了 克 服 這 一 缺 點(diǎn) , 人 們 提 出 了 多 重 范 圍檢 驗(yàn) 的 思 想 : 即 把 平 均 數(shù) 按 大 小 排 列 后 ,對(duì) 離 得 遠(yuǎn) 的 平 均 數(shù) 采 用 較 大 的 臨 界 值 R。 這一 類(lèi) 的 方 法 主 要 有 Duncan法 和 Newman-Keul法 。 后 者 又 稱(chēng) 為 q法 。 現(xiàn) 介 紹 如 下 : 多 重 比 較 70 Duncan檢 驗(yàn)1 把 需 比 較 的 a個(gè) 平 均 數(shù) 從 大 到 小 排 好 : 2 求 出 各 對(duì) 差 值 , 并 列 成 表 :3 求 臨 界 值 :4 對(duì) 差 值 表 采 用 適 當(dāng) 的 R進(jìn) 行 比 較 。 多 重 比 較 axxx 21 xk SdfkR ),(, nMSS ex / 表 a個(gè) 均 值 間 的 差 值 表 axx 1 axx 2 11 axx 31 xx 21 xx 32 xx 12 axx aa xx 1 aa xx 2 12 aa xx ax 1ax 3x 2x 1ax 2ax 2x1x 72 多 重 比 較 臨 界 值 表 多 重 比 較K 0.05 R0.05 0.01 R0.012 0.05(2,df) R2,0.05 0.01(2,df) R2,0.013 0.05(3,df) R3,0.05 0.01(3,df) R3,0.01 a 0.05(a,df) Ra,0.05 0.01(a,df) Ra,0.01 73 Duncan檢 驗(yàn)差 值 表 中 每 條 對(duì) 角 線(xiàn) 上的 k值 是 相 同 的 , 可 使 用 同一 個(gè) 臨 界 值 R。差 值 大 于 R0.05, 標(biāo) 以“ *”; 大 于 R0.01則 標(biāo) “ *”。 多 重 比 較 74 例 6.2p104例 8.1單 因 素 方 差 分 析 75 方 差 分 析 表變 差 來(lái) 源 平 方 和 自 由 度 均 方 F品 系 間 131.74 4 32.94 42.23*誤 差 15.58 20 0.78總 和 147.32 24 單 因 素 方 差 分 析 76 Duncan檢 驗(yàn) 多 重 比 較品 系 號(hào) IV V III I II平 均 數(shù) 70.8 68.6 67.3 65.3 64.4順 序 號(hào) 1 2 3 4 5 77 表 5個(gè) 均 值 間 的 差 值 表 多 重 比 較 4.651 xx 2.452 xx 5.541 xx 5.331 xx 2.221 xx3.132 xx3.342 xx9.0 54 xx 9.253 xx 0.243 xx 5x 4x 3x 2x1x2x 3x4x 多 重 比 較 臨 界 值 表 多 重 比 較 df K 0.05 R0.05 0.01 R0.0120 2 0.05(2,20)=2.95 R2,0.05 =1.165 0.01(2,20)=4.02 R2,0.01=1.5883 0.05(3,20)=3.10 R3,0.05 =1.225 0.01(3,20)=4.22 R3,0.01 =1.6674 0.05(4,20)=3.18 R4,0.05 =1.256 0.01(4,20)=4.33 R4,0.01 =1.7105 0.05(5,20)=3.25 R5,0.05 =1.284 0.01(5,20)=4.40 Ra,0.01=1.738查 表 查 表 79 表 5個(gè) 均 值 間 的 差 值 表 多 重 比 較 5 4 3 21 234 4.651 xx 2.452 xx 5.541 xx 5.331 xx 2.221 xx3.132 xx3.342 xx9.0 54 xx 9.253 xx 0.243 xx * * * * * 80 81ANOVA株高(cm) 131.740 4 32.935 42.279 .00015.580 20 .779147.320 24Between GroupsWithin GroupsTotal Sum ofSquares df Mean Square F Sig. Test of Homogeneity of Variances 株高(cm) 1.362 4 20 .282 Levene Statistic df1 df2 Sig. Multiple Comparisons Dependent Variable: 株高(cm) .900 .5582 .123 -.264 2.064 -2.000* .5582 .002 -3.164 -.836 -5.500* .5582 .000 -6.664 -4.336 -3.300* .5582 .000 -4.464 -2.136 -.900 .5582 .123 -2.064 .264 -2.900* .5582 .000 -4.064 -1.736 -6.400* .5582 .000 -7.564 -5.236 -4.200* .5582 .000 -5.364 -3.036 2.000* .5582 .002 .836 3.164 2.900* .5582 .000 1.736 4.064 -3.500* .5582 .000 -4.664 -2.336 -1.300* .5582 .030 -2.464 -.136 5.500* .5582 .000 4.336 6.664 6.400* .5582 .000 5.236 7.564 3.500* .5582 .000 2.336 4.664 2.200* .5582 .001 1.036 3.364 3.300* .5582 .000 2.136 4.464 4.200* .5582 .000 3.036 5.364 1.300* .5582 .030 .136 2.464 -2.200* .5582 .001 -3.364 -1.036 .900 .3924 .408 -.598 2.398 -2.000* .4722 .036 -3.874 -.126 -5.500* .6221 .001 -8.220 -2.780 -3.300* .4868 .003 -5.252 -1.348 -.900 .3924 .408 -2.398 .598 -2.900* .4785 .004 -4.785 -1.015 -6.400* .6269 .001 -9.111 -3.689 -4.200* .4930 .001 -6.159 -2.241 2.000* .4722 .036 .126 3.874 2.900* .4785 .004 1.015 4.785 -3.500* .6797 .013 -6.210 -.790 -1.300 .5586 .391 -3.433 .833 5.500* .6221 .001 2.780 8.220 6.400* .6269 .001 3.689 9.111 3.500* .6797 .013 .790 6.210 2.200 .6899 .136 -.525 4.925 3.300* .4868 .003 1.348 5.252 4.200* .4930 .001 2.241 6.159 1.300 .5586 .391 -.833 3.433 -2.200 .6899 .136 -4.925 .525 (J) 品系 II III IV V I III IV V I II IV V I II III V I II III IV II III IV V I III IV V I II IV V I II III V I II III IV (I) 品系 I II III IV V I II III IV V LSD Tamhane Mean Difference (I-J) Std. Error Sig. Lower Bound Upper Bound 95% Confidence Interval The mean difference is significant at the .05 level.*. Multiple Comparisons Dependent Variable: 株高(cm) .900 .5582 .123 -.264 2.064 -2.000* .5582 .002 -3.164 -.836 -5.500* .5582 .000 -6.664 -4.336 -3.300* .5582 .000 -4.464 -2.136 -.900 .5582 .123 -2.064 .264 -2.900* .5582 .000 -4.064 -1.736 -6.400* .5582 .000 -7.564 -5.236 -4.200* .5582 .000 -5.364 -3.036 2.000* .5582 .002 .836 3.164 2.900* .5582 .000 1.736 4.064 -3.500* .5582 .000 -4.664 -2.336 -1.300* .5582 .030 -2.464 -.136 5.500* .5582 .000 4.336 6.664 6.400* .5582 .000 5.236 7.564 3.500* .5582 .000 2.336 4.664 2.200* .5582 .001 1.036 3.364 3.300* .5582 .000 2.136 4.464 4.200* .5582 .000 3.036 5.364 1.300* .5582 .030 .136 2.464 -2.200* .5582 .001 -3.364 -1.036 .900 .3924 .408 -.598 2.398 -2.000* .4722 .036 -3.874 -.126 -5.500* .6221 .001 -8.220 -2.780 -3.300* .4868 .003 -5.252 -1.348 -.900 .3924 .408 -2.398 .598 -2.900* .4785 .004 -4.785 -1.015 -6.400* .6269 .001 -9.111 -3.689 -4.200* .4930 .001 -6.159 -2.241 2.000* .4722 .036 .126 3.874 2.900* .4785 .004 1.015 4.785 -3.500* .6797 .013 -6.210 -.790 -1.300 .5586 .391 -3.433 .833 5.500* .6221 .001 2.780 8.220 6.400* .6269 .001 3.689 9.111 3.500* .6797 .013 .790 6.210 2.200 .6899 .136 -.525 4.925 3.300* .4868 .003 1.348 5.252 4.200* .4930 .001 2.241 6.159 1.300 .5586 .391 -.833 3.433 -2.200 .6899 .136 -4.925 .525 (J) 品系 II III IV V I III IV V I II IV V I II III V I II III IV II III IV V I III IV V I II IV V I II III V I II III IV (I) 品系 I II III IV V I II III IV V LSD Tamhane Mean Difference (I-J) Std. Error Sig. Lower Bound Upper Bound 95% Confidence Interval The mean difference is significant at the .05 level.*. 株高(cm) 5 64.400 5 65.300 5 67.300 5 68.600 5 70.800 .123 1.000 1.000 1.000 品系 II I III V IV Sig. Duncana N 1 2 3 4 Subset for alpha = .05 Means for groups in homogeneous subsets are displayed. Uses Harmonic Mean Sample Size = 5.000.a. 85 株高(cm) 5 64.400 5 65.300 5 67.300 5 68.600 5 70.800 .123 1.000 1.000 1.000 5 64.400 5 65.300 5 67.300 5 68.600 5 70.800 .123 1.000 1.000 1.000 品系 II I III V IV Sig. II I III V IV Sig. Student-Newman-Keulsa Duncana N 1 2 3 4 Subset for alpha = .05 Means for groups in homogeneous subsets are displayed. Uses Harmonic Mean Sample Size = 5.000.a. 86 例 6.3 單 因 素 方 差 分 析下 表 為 某 職 業(yè) 病 防 治 院 對(duì) 31名 石 棉 礦 工中 的 石 棉 肺 患 者 、 可 疑 患 者 和 非 患 者 進(jìn)行 了 肺 活 量 ( L)測(cè) 定 的 數(shù) 據(jù) , 問(wèn) 三 組 石棉 礦 工 的 肺 活 量 有 無(wú) 差 別 ?石 棉 肺 患 者 1.8 1.4 1.5 2.1 1.9 1.7 1.8 1.9 1.8 1.8 2.0可 疑 患 者 2.3 2.1 2.1 2.1 2.6 2.5 2.3 2.4 2.4非 患 者 2.9 3.2 2.7 2.8 2.7 3.0 3.4 3.0 3.4 3.3 3.5肺 活 量 87 88 89 90 91 92 上 述 基 本 結(jié) 果 表 明 : F=84.544, P=0.0000.001, 說(shuō) 明 三 組 礦 工 的 用 力 肺活 量 有 極 其 顯 著 的 差 異 。 93 94 95 96 97 肺活量 11 1.791 9 2.311 11 3.082 1.000 1.000 1.000 GROUP 石棉肺患者 可疑患者 非患者 Sig. Duncana,b N 1 2 3 Subset for alpha = .05 Means for groups in homogeneous subsets are displayed. Uses Harmonic Mean Sample Size = 10.241.a. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed. b. 98 多 重 比 較 結(jié) 果 表 明 : 各 組 之 間 ( 1與 2, 1與 3, 2與 3組 之 間 ) 均 存 在 極 其 顯 著 的 差異 ( P=0.0000.001) 。 99 教 學(xué) 內(nèi) 容第 四 節(jié) 方 差 分 析 應(yīng) 具 備 的 條 件一 、 方 差 分 析 應(yīng) 滿(mǎn) 足 三 個(gè) 條 件二 、 多 個(gè) 方 差 齊 性 檢 驗(yàn) 方 差 分 析 應(yīng) 具 備 的 條 件 100 方 差 分 析 應(yīng) 滿(mǎn) 足 三 個(gè) 條 件可 加 性正 態(tài) 性方 差 齊 性 方 差 分 析 應(yīng) 具 備 的 條 件 101 多 個(gè) 方 差 齊 性 檢 驗(yàn)方 差 齊 性 。 即 要 求 所 有 處 理 隨 機(jī)誤 差 的 方 差 都 要 相 等 , 換 句 話(huà) 說(shuō)不 同 處 理 不 能 影 響 隨 機(jī) 誤 差 的 方差 。巴 勒 特 ( Bartlett) 檢 驗(yàn) 方 差 分 析 應(yīng) 具 備 的 條 件 102 作 業(yè) 17/12p1178.3 OK!