歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

2018-2019版高中數(shù)學(xué) 第四章 用數(shù)學(xué)歸納法證明不等式4本講整合課件 新人教A版選修4-5.ppt

  • 資源ID:3161383       資源大小:673.50KB        全文頁數(shù):21頁
  • 資源格式: PPT        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

2018-2019版高中數(shù)學(xué) 第四章 用數(shù)學(xué)歸納法證明不等式4本講整合課件 新人教A版選修4-5.ppt

本講整合,答案:證明整除問題證明幾何問題伯努利不等式,專題一,專題二,專題一:對數(shù)學(xué)歸納法原理及步驟的理解1.數(shù)學(xué)歸納法的證明過程共有兩步,缺一不可,其中,第一步是奠基,第二步是假設(shè)與遞推.2.第一步是證明n取第一個可取值時命題成立,但不一定就是n=1.3.第二步證明過程中,必須用上歸納假設(shè),否則就不是用數(shù)學(xué)歸納法證明.,專題一,專題二,例1用數(shù)學(xué)歸納法證明“對于任意x>0的實數(shù),以及正整數(shù)n,都有xn+xn-2+xn-4+n+1”時,需驗證的使命題成立的最小正整數(shù)值n0應(yīng)為()A.n0=1B.n0=2C.n0=1,2D.以上答案均不正確分析:根據(jù)n的取值條件以及不等式是否成立進行確定.解析:由于nN+,則n的最小值為n0=1.答案:A,專題一,專題二,變式訓(xùn)練1某個命題與正整數(shù)有關(guān),如果當(dāng)n=k時,該命題不成立,那么可推得當(dāng)n=k+1時命題也不成立,現(xiàn)在當(dāng)n=5時,該命題成立,那么可推得()A.當(dāng)n=6時該命題不成立B.當(dāng)n=6時該命題成立C.當(dāng)n=4時該命題不成立D.當(dāng)n=4時該命題成立解析:依題意當(dāng)n=4時該命題不成立,則當(dāng)n=5時,該命題也不成立.而當(dāng)n=5時,該命題成立卻無法判斷n=6時該命題是不是成立,故選D.答案:D,專題一,專題二,專題二:數(shù)學(xué)歸納法的應(yīng)用分析:注意到這是與正整數(shù)n有關(guān)的命題,可考慮用數(shù)學(xué)歸納法證明.,專題一,專題二,專題一,專題二,變式訓(xùn)練2求證:2n+2>n2,nN+.證明:(1)當(dāng)n=1時,左邊=21+2=4;右邊=1,左邊>右邊;當(dāng)n=2時,左邊=22+2=6,右邊=22=4,所以左邊>右邊;當(dāng)n=3時,左邊=23+2=10,右邊=32=9,所以左邊>右邊.因此當(dāng)n=1,2,3時,不等式成立.(2)假設(shè)當(dāng)n=k(k3)時不等式成立,即2k+2>k2.當(dāng)n=k+1時,2k+1+2=22k+2=2(2k+2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故當(dāng)n=k+1時,不等式成立.由(1)(2)可知,不等式2n+2>n2對于任何nN+都成立.,專題一,專題二,例3已知y=f(x)滿足f(n-1)=f(n)-lgan-1(n2,nN),且f(1)=-lga,是否存在實數(shù),使f(n)=(n2+n-1)lga,對任意nN+都成立?證明你的結(jié)論.分析:可先根據(jù)f(1),f(2)的值,建立關(guān)于,的方程組,求得,的值,然后再利用數(shù)學(xué)歸納法證明結(jié)論.解:由已知得f(n)=f(n-1)+lgan-1.令n=2,f(2)=f(1)+lga=-lga+lga=0.又f(1)=(-1)lga,專題一,專題二,專題一,專題二,變式訓(xùn)練3設(shè)Pn=(1+x)n,Qn=1+nx+x2,nN+,x(-1,+),試比較Pn與Qn的大小,并加以證明.,解:(1)當(dāng)n=1,2時,Pn=Qn.(2)當(dāng)n3時,若x(0,+),顯然有Pn>Qn;若x=0,則Pn=Qn;若x(-1,0),則P3-Q3=x3<0,所以P3<Q3.P4-Q4=4x3+x4=x3(4+x)<0,所以P4<Q4.猜想當(dāng)k3時,Pk<Qk.用數(shù)學(xué)歸納法證明如下.當(dāng)k=3時,P3<Q3成立.假設(shè)當(dāng)k=m時不等式成立,即Pm<Qm.當(dāng)k=m+1時,Pm+1=(1+x)Pm<(1+x)Qm,專題一,專題二,即當(dāng)k=m+1時,不等式成立.所以當(dāng)n3,且x(-1,0)時,Pn<Qn.,1,2,3,4,考點:數(shù)學(xué)歸納法的應(yīng)用1.(2017浙江高考)已知數(shù)列xn滿足:x1=1,xn=xn+1+ln(1+xn+1)(nN+).證明:當(dāng)nN+時,(1)0<xn+10.當(dāng)n=1時,x1=1>0,假設(shè)n=k時,xk>0,那么n=k+1時,若xk+10,則00.因此xn>0(nN+).所以xn=xn+1+ln(1+xn+1)>xn+1.因此0<xn+10,即x0時,f(x)單調(diào)遞減.故f(x)的單調(diào)遞增區(qū)間為(-,0),單調(diào)遞減區(qū)間為(0,+).當(dāng)x>0時,f(x)<f(0)=0,即1+x<ex.,1,2,3,4,下面用數(shù)學(xué)歸納法證明.()當(dāng)n=1時,左邊=右邊=2,成立.,1,2,3,4,所以當(dāng)n=k+1時,也成立.根據(jù)()(),可知對一切正整數(shù)n都成立.,1,2,3,4.(2014陜西高考節(jié)選)設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf(x),x0,其中f(x)是f(x)的導(dǎo)函數(shù).令g1(x)=g(x),gn+1(x)=g(gn(x),nN+,求gn(x)的表達式.,4,

注意事項

本文(2018-2019版高中數(shù)學(xué) 第四章 用數(shù)學(xué)歸納法證明不等式4本講整合課件 新人教A版選修4-5.ppt)為本站會員(jun****875)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!