2019年高考數(shù)學(xué)真題分類匯編 10.6 圓錐曲線的綜合問(wèn)題 理 .doc
2019年高考數(shù)學(xué)真題分類匯編 10.6 圓錐曲線的綜合問(wèn)題 理考點(diǎn)一定值與最值問(wèn)題1.(xx湖北,9,5分)已知F1,F2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且F1PF2=,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為()A. B. C.3 D.2答案A2.(xx福建,9,5分)設(shè)P,Q分別為圓x2+(y-6)2=2和橢圓+y2=1上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是()A.5 B.+ C.7+ D.6答案D3.(xx四川,10,5分)已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè),=2(其中O為坐標(biāo)原點(diǎn)),則ABO與AFO面積之和的最小值是()A.2 B.3 C. D.答案B4.(xx安徽,19,13分)如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過(guò)原點(diǎn)O的兩條直線l1和l2,l1與E1,E2分別交于A1,A2兩點(diǎn),l2與E1,E2分別交于B1,B2兩點(diǎn).(1)證明:A1B1A2B2;(2)過(guò)O作直線l(異于l1,l2)與E1,E2分別交于C1,C2兩點(diǎn).記A1B1C1與A2B2C2的面積分別為S1與S2,求的值.解析(1)證明:設(shè)直線l1,l2的方程分別為y=k1x,y=k2x(k1,k20),則由得A1,由得A2.同理可得B1,B2.所以=2p1,=2p2,故=,所以A1B1A2B2.(2)由(1)知A1B1A2B2,同理可得B1C1B2C2,C1A1C2A2.所以A1B1C1A2B2C2.因此=.又由(1)中的=知=.故=.5.(xx浙江,21,15分)如圖,設(shè)橢圓C:+=1(a>b>0),動(dòng)直線l與橢圓C只有一個(gè)公共點(diǎn)P,且點(diǎn)P在第一象限.(1)已知直線l的斜率為k,用a,b,k表示點(diǎn)P的坐標(biāo);(2)若過(guò)原點(diǎn)O的直線l1與l垂直,證明:點(diǎn)P到直線l1的距離的最大值為a-b.解析(1)設(shè)直線l的方程為y=kx+m(k<0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l與C只有一個(gè)公共點(diǎn),故=0,即b2-m2+a2k2=0,解得點(diǎn)P的坐標(biāo)為.又點(diǎn)P在第一象限,故點(diǎn)P的坐標(biāo)為P.(2)由于直線l1過(guò)原點(diǎn)O且與l垂直,故直線l1的方程為x+ky=0,所以點(diǎn)P到直線l1的距離d=,整理得d=.因?yàn)閍2k2+2ab,所以=a-b,當(dāng)且僅當(dāng)k2=時(shí)等號(hào)成立.所以,點(diǎn)P到直線l1的距離的最大值為a-b.6.(xx湖南,21,13分)如圖,O為坐標(biāo)原點(diǎn),橢圓C1:+=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,離心率為e1;雙曲線C2:-=1的左、右焦點(diǎn)分別為F3、F4,離心率為e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)過(guò)F1作C1的不垂直于y軸的弦AB,M為AB的中點(diǎn),當(dāng)直線OM與C2交于P,Q兩點(diǎn)時(shí),求四邊形APBQ面積的最小值.解析(1)因?yàn)閑1e2=,所以=,即a4-b4=a4,因此a2=2b2,從而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分別為+y2=1,-y2=1.(2)因?yàn)锳B不垂直于y軸,且過(guò)點(diǎn)F1(-1,0),故可設(shè)直線AB的方程為x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判別式大于0,設(shè)A(x1,y1),B(x2,y2),則y1,y2是上述方程的兩個(gè)實(shí)根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中點(diǎn)M的坐標(biāo)為.故直線PQ的斜率為-,則PQ的方程為y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,從而|PQ|=2=2.設(shè)點(diǎn)A到直線PQ的距離為d,則點(diǎn)B到直線PQ的距離也為d,所以2d=,因?yàn)辄c(diǎn)A,B在直線mx+2y=0的異側(cè),所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,從而2d=.又因?yàn)閨y1-y2|=,所以2d=.故四邊形APBQ的面積S=|PQ|2d=2 .而0<2-m2<2,故當(dāng)m=0時(shí),S取得最小值2.綜上所述,四邊形APBQ面積的最小值為2.7.(xx四川,20,13分)已知橢圓C:+=1(a>b>0)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線x=-3上任意一點(diǎn),過(guò)F作TF的垂線交橢圓C于點(diǎn)P,Q.(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));(ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).解析(1)由已知可得解得a2=6,b2=2,所以橢圓C的標(biāo)準(zhǔn)方程是+=1.(2)(i)由(1)可得,F的坐標(biāo)是(-2,0),設(shè)T點(diǎn)的坐標(biāo)為(-3,m).則直線TF的斜率kTF=-m.當(dāng)m0時(shí),直線PQ的斜率kPQ=,直線PQ的方程是x=my-2.當(dāng)m=0時(shí),直線PQ的方程是x=-2,也符合x=my-2的形式.設(shè)P(x1,y1),Q(x2,y2),將直線PQ的方程與橢圓C的方程聯(lián)立,得消去x,得(m2+3)y2-4my-2=0,其判別式=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中點(diǎn)M的坐標(biāo)為.所以直線OM的斜率kOM=-,又直線OT的斜率kOT=-,所以點(diǎn)M在直線OT上,因此OT平分線段PQ.(ii)由(i)可得,|TF|=,|PQ|=.所以=.當(dāng)且僅當(dāng)m2+1=,即m=1時(shí),等號(hào)成立,此時(shí)取得最小值.所以當(dāng)最小時(shí),T點(diǎn)的坐標(biāo)是(-3,1)或(-3,-1).考點(diǎn)二存在性問(wèn)題