2020高考文科數(shù)學(xué)二輪分層特訓(xùn)卷:主觀題專(zhuān)練 函數(shù)與導(dǎo)數(shù)11 Word版含解析
-
資源ID:33298175
資源大?。?span id="oa6bgcd" class="font-tahoma">76KB
全文頁(yè)數(shù):8頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2020高考文科數(shù)學(xué)二輪分層特訓(xùn)卷:主觀題專(zhuān)練 函數(shù)與導(dǎo)數(shù)11 Word版含解析
函數(shù)與導(dǎo)數(shù)(11)12018北京卷設(shè)函數(shù)f(x)ax2(4a1)x4a3ex.(1)若曲線yf(x)在點(diǎn)(1,f(1)處的切線與x軸平行,求a;(2)若f(x)在x2處取得極小值,求a的取值范圍解析:(1)因?yàn)閒(x)ax2(4a1)x4a3ex,所以f(x)ax2(2a1)x2ex.所以f(1)(1a)e.由題設(shè)知f(1)0,即(1a)e0,解得a1.此時(shí)f(1)3e0.所以a的值為1.(2)由(1)得f(x)ax2(2a1)x2ex(ax1)(x2)ex.若a>,則當(dāng)x時(shí),f(x)<0;當(dāng)x(2,)時(shí),f(x)>0.所以f(x)在x2處取得極小值若a,則當(dāng)x(0,2)時(shí),x2<0,ax1x1<0,所以f(x)>0.所以2不是f(x)的極小值點(diǎn)綜上可知,a的取值范圍是.22019安徽省安慶市高三模擬已知函數(shù)f(x)eln xax(aR)(1)討論f(x)的單調(diào)性;(2)當(dāng)ae時(shí),證明:xf(x)ex2ex0.解析:解法一(1)f(x)a(x>0),若a0,則f(x)>0,f(x)在(0,)上單調(diào)遞增若a>0,則當(dāng)0<x<時(shí),f(x)>0;當(dāng)x>時(shí),f(x)<0.所以f(x)在上單調(diào)遞增,在上單調(diào)遞減(2)證明:因?yàn)閤>0,所以只需證f(x)2e,由(1)知,當(dāng)ae時(shí),f(x)在(0,1)上單調(diào)遞增,在(1,)上單調(diào)遞減,所以f(x)maxf(1)e.設(shè)g(x)2e(x>0),則g(x),所以當(dāng)0<x<1時(shí),g(x)<0,g(x)單調(diào)遞減;當(dāng)x>1時(shí),g(x)>0,g(x)單調(diào)遞增,所以g(x)ming(1)e.所以當(dāng)x>0時(shí),f(x)g(x),即f(x)2e,即xf(x)ex2ex0.解法二(1)同解法一(2)證明:由題意知,即證exln xex2ex2ex0(x>0),從而等價(jià)于ln xx2.設(shè)函數(shù)g(x)ln xx2,則g(x)1.所以當(dāng)x(0,1)時(shí),g(x)>0;當(dāng)x(1,)時(shí),g(x)<0,故g(x)在(0,1)上單調(diào)遞增,在(1,)上單調(diào)遞減從而g(x)在(0,)上的最大值為g(1)1.設(shè)函數(shù)h(x),則h(x).所以當(dāng)x(0,1)時(shí),h(x)<0;當(dāng)x(1,)時(shí),h(x)>0.故h(x)在(0,1)上單調(diào)遞減,在(1,)上單調(diào)遞增從而h(x)在(0,)上的最小值為h(1)1.綜上,當(dāng)x>0時(shí),g(x)h(x),即xf(x)ex2ex0.32019甘肅第二次診斷已知函數(shù)f(x)2x2ax1ln x(aR)(1)若a0,求曲線yf(x)在點(diǎn)(1,f(1)處的切線方程;(2)若a5,求f(x)的單調(diào)區(qū)間;(3)若3<a4,證明:f(x)在x1,e上有唯一零點(diǎn)解析:(1)若a0,則f(x)2x21ln x,f(x)4x,故f(1)5,即曲線yf(x)在點(diǎn)(1,f(1)處的切線斜率為5,又f(1)3,所以所求切線方程為y35(x1),即5xy20.(2)當(dāng)a5時(shí),f(x)2x25x1ln x,其定義域?yàn)?0,),f(x)4x5,當(dāng)x,(1,)時(shí),f(x)>0,所以f(x)在和(1,)上單調(diào)遞增當(dāng)x時(shí),f(x)<0,所以f(x)在上單調(diào)遞減(3)由f(x)2x2ax1ln x得f(x)4xa.設(shè)h(x)4x2ax1,a216,當(dāng)3<a4時(shí),0,有h(x)0,即f(x)0,故f(x)在(0,)上單調(diào)遞增又f(1)3a<0,f(e)2e2ae2e(2ea)2>0,所以f(x)在x1,e上有唯一零點(diǎn)42019武漢調(diào)研已知函數(shù)f(x)ln(x1),其中a為常數(shù)(1)當(dāng)1<a2時(shí),討論f(x)的單調(diào)性;(2)當(dāng)x>0時(shí),求g(x)xlnln(1x)的最大值解析:(1)函數(shù)f(x)的定義域?yàn)?1,),f(x),x>1.當(dāng)1<2a3<0,即1<a<時(shí),當(dāng)1<x<2a3或x>0時(shí),f(x)>0,f(x)單調(diào)遞增,當(dāng)2a3<x<0時(shí),f(x)<0,f(x)單調(diào)遞減當(dāng)2a30,即a時(shí),f(x)0,則f(x)在(1,)上單調(diào)遞增當(dāng)2a3>0,即a>時(shí),當(dāng)1<x<0或x>2a3時(shí),f(x)>0,則f(x)在(1,0),(2a3,)上單調(diào)遞增,當(dāng)0<x<2a3時(shí),f(x)<0,則f(x)在(0,2a3)上單調(diào)遞減綜上,當(dāng)1<a<時(shí),f(x)在(1,2a3),(0,)上單調(diào)遞增,在(2a3,0)上單調(diào)遞減;當(dāng)a時(shí),f(x)在(1,)上單調(diào)遞增;當(dāng)<a2時(shí),f(x)在(1,0),(2a3,)上單調(diào)遞增,在(0,2a3)上單調(diào)遞減(2)g(x)ln(1x)xlnxg,g(x)在(0,)上的最大值等價(jià)于g(x)在(0,1上的最大值令h(x)g(x)ln(1x)(lnx1)ln(1x)lnx,則h(x).由(1)可知當(dāng)a2時(shí),f(x)在(0,1上單調(diào)遞減,f(x)<f(0)0,h(x)<0,從而h(x)在(0,1上單調(diào)遞減,h(x)h(1)0,g(x)在(0,1上單調(diào)遞增,g(x)g(1)2ln2,g(x)的最大值為2ln2.52019湖北省七市教科研協(xié)作高三聯(lián)考已知函數(shù)f(x)(x1)exax2(e是自然對(duì)數(shù)的底數(shù),aR)(1)判斷函數(shù)f(x)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;(2)若xR,f(x)exx3x,求a的取值范圍解析:(1)f(x)的定義域?yàn)镽,f(x)xex2axx(ex2a)當(dāng)a0時(shí),f(x)在(,0)上單調(diào)遞減,在(0,)上單調(diào)遞增,f(x)有1個(gè)極值點(diǎn);當(dāng)0<a<時(shí),f(x)在(,ln(2a)上單調(diào)遞增,在(ln(2a),0)上單調(diào)遞減,在(0,)上單調(diào)遞增,f(x)有2個(gè)極值點(diǎn);當(dāng)a時(shí),f(x)在R上單調(diào)遞增,此時(shí)f(x)沒(méi)有極值點(diǎn);當(dāng)a>時(shí),f(x)在(,0)上單調(diào)遞增,在(0,ln(2a)上單調(diào)遞減,在(ln(2a),)上單調(diào)遞增,f(x)有2個(gè)極值點(diǎn),綜上所述,當(dāng)a0時(shí),f(x)有1個(gè)極值點(diǎn);當(dāng)a>0且a時(shí),f(x)有2個(gè)極值點(diǎn);當(dāng)a時(shí),f(x)沒(méi)有極值點(diǎn)(2)由f(x)exx3x,得xexx3ax2x0.當(dāng)x>0時(shí),exx2ax10,即a對(duì)x>0恒成立設(shè)g(x)(x>0),則g(x).設(shè)h(x)exx1(x>0),則h(x)ex1.x>0,h(x)>0,h(x)在(0,)上單調(diào)遞增,h(x)>h(0)0,即ex>x1,g(x)在(0,1)上單調(diào)遞減,在(1,)上單調(diào)遞增,g(x)g(1)e2,ae2;當(dāng)x0時(shí),原不等式恒成立,aR;當(dāng)x<0時(shí),exx2ax10,設(shè)m(x)exx2ax1(x<0),則m(x)ex2xa.設(shè)(x)ex2xa(x<0),則(x)ex2<0,m(x)在(,0)上單調(diào)遞減,m(x)>m(0)1a,若a1,則m(x)>0,m(x)在(,0)上單調(diào)遞增,m(x)<m(0)0;若a>1,m(0)1a<0,x0<0,使得x(x0,0)時(shí),m(x)<0,即m(x)在(x0,0)上單調(diào)遞減,m(x)>m(0)0,不符合題意,舍去a1.綜上,a的取值范圍是(,e262019貴陽(yáng)市普通高中高三年級(jí)摸底考試已知函數(shù)f(x)xln xaxa(aR)(1)f(x)在點(diǎn)(1,f(1)處的切線方程為yxt,求a和t的值;(2)對(duì)任意的x>1,f(x)0恒成立,求a的取值范圍解析:(1)函數(shù)定義域?yàn)閤(0,),f(x)ln x1a,由已知f(1)1,則1a1,即a2,所以f(1)0220,將(1,0)代入切線方程有t1,所以a2,t1.(2)對(duì)任意x(1,),f(x)0恒成立,即ln xa0恒成立,令g(x)ln xa,有g(shù)(x),當(dāng)a>1時(shí),g(x),g(x)隨x的變化情況為x(1,a)a(a,)g(x)0g(x)單調(diào)遞減極小值單調(diào)遞增由表可知g(x)ming(a)ln a1a,又因?yàn)樵诤瘮?shù)h(x)ln x1x中,h(x),所以h(x)在(0,1)上單調(diào)遞增,在(1,)上單調(diào)遞減,所以h(x)h(1)0,所以g(x)ming(a)h(a)<h(1)0,與“對(duì)任意x(1,),ln xa0恒成立”矛盾,故a>1不合題意;當(dāng)a1時(shí),g(x)0,則g(x)在1,)上單調(diào)遞增,所以g(x)g(1)0,即對(duì)任意x(1,),ln xa0恒成立,故a1滿(mǎn)足題意,綜上所述,實(shí)數(shù)a的取值范圍為(,1