齊次方程高等數(shù)學(xué)微積分.ppt
6.2.2齊次方程,的微分方程稱為齊次方程.,2.解法,作變量代換,代入原式,可分離變量的方程,1.定義,例1.解微分方程,解:,代入原方程得,分離變量,兩邊積分,得,故原方程的通解為,(當(dāng)C=0時(shí),y=0也是方程的解),(C為任意常數(shù)),例2求解微分方程,微分方程的解為,解,例3.解微分方程,解:,則有,分離變量,積分得,代回原變量得通解,即,說明:顯然x=0,y=0,y=x也是原方程的解,但在,(C為任意常數(shù)),求解過程中丟失了.,例4求解微分方程,解,微分方程的解為,例5拋物線的光學(xué)性質(zhì),實(shí)例:車燈的反射鏡面-旋轉(zhuǎn)拋物面,解,如圖,得微分方程,由夾角正切公式得,分離變量,積分得,平方化簡得,拋物線,6.2.3可化為齊次的方程,為齊次方程.,(其中h和k是待定的常數(shù)),否則為非齊次方程.,2.解法,1.定義,有唯一一組解.,得通解代回,未必有解,上述方法不能用.,可分離變量的微分方程.,可分離變量的微分方程.,可分離變量.,解,代入原方程得,分離變量法得,得原方程的通解,方程變?yōu)?利用變量代換求微分方程的解,解,代入原方程,原方程的通解為,求下列微分方程的通解:,解,代入上式,并整理得,令,則,再令,則,兩邊積分得,原方程化為,變量還原得通解,小結(jié):,齊次方程,齊次方程的解法,可化為齊次方程的方程,思考題,方程,是否為齊次方程?,思考題解答,方程兩邊同時(shí)對求導(dǎo):,原方程是齊次方程.,練習(xí)題,練習(xí)題答案,