歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

矩陣對(duì)角化問題數(shù)學(xué)畢業(yè)論文

  • 資源ID:36434257       資源大?。?span id="gthfa2b" class="font-tahoma">1.48MB        全文頁數(shù):16頁
  • 資源格式: DOC        下載積分:15積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要15積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。

矩陣對(duì)角化問題數(shù)學(xué)畢業(yè)論文

矩陣對(duì)角化問題 高等代數(shù)中,在講到線性空間和線性變換時(shí),一個(gè)主要內(nèi)容是討論矩陣對(duì)角化,即在什么條件下矩陣與對(duì)角矩陣相似.而矩陣對(duì)角化的原始問題是:設(shè)是有限維復(fù)線性空間,是上的線性變換,能否在中找到一個(gè)基,使得在這個(gè)基下的矩陣比較簡(jiǎn)單.作為純粹的幾何問題就是能否分解成一些不變子空間的直和.討論這個(gè)幾何問題的證明對(duì)于了解線性空間有很大好處.本文將對(duì)分解成所謂根子空間的直和給出一種較為初等的證明,并由根子空間分解定理推出線性變換(或階方陣)可對(duì)角化的充要條件.把這些充要條件與其他線性變換(或階方陣)可對(duì)角化的充要條件進(jìn)行匯總比較,從而得到線性變換的矩陣對(duì)角化的方法的優(yōu)劣,便于學(xué)習(xí)和研究根據(jù)具體情況選用.1預(yù)備知識(shí)1.1有關(guān)定義定義1.1.1 線性空間一個(gè)變換稱為線性變換,如果對(duì)于中任意的元素和數(shù)域中任意數(shù)K都有 (+)=()+()()= ()定義1.1.2 設(shè)是數(shù)域上的線性空間的線性變換,W是的子空間,如果W中的向量在下像仍在W中,換句話說,對(duì)于W中任一向量,有,我們就稱是的不變子空間,簡(jiǎn)稱-空間.定義1.1.3設(shè),線性空間的子空間,如果和+中每個(gè)向=+,是唯一的,這個(gè)和就稱為直和.定義1.1.4 如果數(shù)域上的階矩陣A相似于對(duì)角陣,則可對(duì)角化定義1.1.5 設(shè)是數(shù)域上的階矩陣,如果數(shù)域上的多項(xiàng)式使得= 0,則稱以為根.在以為根的多項(xiàng)式中次數(shù)最低且首相系數(shù)為1的多項(xiàng)式稱為的最小多項(xiàng)式.定義1.1.6 設(shè)是數(shù)域上的維線性空間的線性變換,如果存在非零向量,數(shù),N,使得,那么稱為屬于的根向量.線性變換的屬于特征根的根向量的全體,再添上零向量所組成的的子集是的一個(gè)子空間,稱的這個(gè)子空間為的屬于特征值的根子空間.Sylvester不等式 設(shè)均為階矩陣,秩()+秩()+秩()1.2 線性空間根子空分解定理引理 設(shè)是n 維復(fù)線性空間V 的線性變換, 是的所有不同的特征值,且其中是V 的全部根子空間,則在上為冪零線性變換,而在上為可逆線性變換.證明 不失一般性,只證明在上為冪零線性變換,而在上為可逆線性變換.在中取一個(gè)基 , 則有正整數(shù) ,使 , i = 1,2,, t ,取p = max, 有, i = 1 ,2t,于是對(duì)任意,令,則 =( )= ,即在上, = (為零變換) ,所以在上為冪零線性變換.令W =,若不可逆,則一定有一個(gè)特征根是0 ,因而在W 上有屬于特征根0 的特征向量 (W) ,即有 =0, 亦即(0). 又因W = ,所以有=,其中 ( i = 2 ,s) 于是有正整數(shù),使 , i = 2 , s ,令,則() = = 0 , i = 2 , s,從而() = () + + (s) = 0 , 另一方面, 因?yàn)椋?)= 這就導(dǎo)致了矛盾.所以在 上為可逆線性變換.定理1.2.1 (根子空間分解定理) 設(shè)是維復(fù)線性空間V的線性變換, 是的所有不同的特征值,是屬于 的根子空間, i = 1 ,2 , s ,則.證明 設(shè)的特征多項(xiàng)式為令 i = 1 ,2 , s , 則 互素, 于是有多項(xiàng)式 , 使, 將 代入上式, 得 ,(為單位變換), 任給 V ,有 =() = , 記, i = 1 ,2 , s ,于是.下面證明 , i = 1 ,2 , 因?yàn)?由哈密爾頓- 凱萊定理 (為零變換),于是有=(為零變換)即, i = 1 ,2, , s ,所以,又顯然 ,故.再證明上面的和是直和,設(shè), i = 1 ,2 ,s 由引理知在上為冪零變換,所以存在正整數(shù) ,使得在上(為零變換),又由引理 ,在上為可逆變換,所以 在上也是可逆變換,于是0 =()= +()=()從而=0 ,于是 , i = 1 ,2 , s,由零向量的表法唯一知根子空間分解定理全部證完.運(yùn)用根子空間分解定理可以推出一些矩陣對(duì)角化的充要條件.對(duì)角矩陣可以認(rèn)你為是矩陣中最簡(jiǎn)單的一種,一些復(fù)雜的矩陣可以通過適當(dāng)?shù)姆椒ɑ癁閷?duì)角陣.通過相應(yīng)對(duì)角陣的研究學(xué)習(xí),可以推知這些復(fù)雜矩陣的性質(zhì),促進(jìn)對(duì)復(fù)雜矩陣的了解,簡(jiǎn)化很多復(fù)雜工作,給學(xué)習(xí)和研究帶來很大方便.下面就矩陣對(duì)角化的充要條件作一詳細(xì)論述.2. 矩陣可對(duì)角化的一些充要條件及矩陣對(duì)角化方法2.1 特征向量法定理2.1.1 設(shè)是維線性空間V的一個(gè)線性變換, 的矩陣可以在某一組基下為對(duì)角陣充要條件是, 有個(gè)線性無關(guān)的特征向量.證明 設(shè)在基下具有對(duì)角陣.即 i=1,2n因此, 就是的個(gè)線性無關(guān)的特征向量.反過來,如果有個(gè)線性無關(guān)的特征向量,那么就取為基.顯然, 在這組基下的矩陣是對(duì)角陣. 證 畢.例1. 設(shè)線性變換在基下的矩陣是(1), (2), 問A是否可以對(duì)角化?解 (1)因?yàn)樘卣鞫囗?xiàng)式為=所以A的特征值是-1(二重)和5把特征值-1代入齊次方程組得 (1)解得基礎(chǔ)解系是和因此屬于-1的兩個(gè)線性無關(guān)的特征向量是把特征值5代入(1)得基礎(chǔ)解系,所以屬于5的全部特征向量為則在基下的矩陣為B=(2) =,所特征值為1(二重)和-2.對(duì)應(yīng)特征值1的特征向量為對(duì)應(yīng)特征值-2的特征向量為由此知有兩個(gè)線性無關(guān)的特征向量,由定理1知不能對(duì)角化.運(yùn)用此定理判定一個(gè)線性變換的矩陣是否可以對(duì)角化的方法簡(jiǎn)單易懂,但是過程比較繁瑣.先計(jì)算一個(gè)行列式求出的特征值,再利用方程組和特征向量的有關(guān)理論及求法計(jì)算出是否有個(gè)線性無關(guān)的特征向量.計(jì)算過程容易出錯(cuò).下面利用最小多項(xiàng)式給出一個(gè)線性變換的矩陣可角化的充要條件.此定理比定理2.1.1簡(jiǎn)潔實(shí)用2.2 最小多項(xiàng)式法引理 設(shè)A是一個(gè)對(duì)角陣A=,并設(shè),的最小多項(xiàng)式為,那么A的最小多項(xiàng)式為的最小公倍數(shù).證明 =,首先=0.因此能被A的最小多項(xiàng)式整除.其次.那么=0, =0,=0,因而,.并由此得.這樣就證明了是A的最小多項(xiàng)式. 這個(gè)結(jié)論可以推廣到A為若干矩陣組成的準(zhǔn)對(duì)角陣的情形.即如果A=,的最小多項(xiàng)式為,i=1,2,s.那么A的最小多項(xiàng)式為.定理2.2.1 數(shù)域P上級(jí)矩陣A與對(duì)角陣相似的充要條件為A的最小多項(xiàng)式是P上互素的一次因式的乘積.證明 根據(jù)引理的推廣形式,條件的必要性是顯然的. 下面證明充分性. 根據(jù)矩陣和線性變換之間的關(guān)系,我們可以定義任意線性變換的最小多項(xiàng)式,它等于其對(duì)應(yīng)矩陣的最小多項(xiàng)式.所以只需證明,若數(shù)域上某線性空間V的線性變換的最小多項(xiàng)式是上互素的一次因式的乘積,則有一組特征向量做成V的基. 實(shí)際上,由于.由定理1.2.1同樣的步驟可證,其中,把各自的基合起來就是V的基,而每個(gè)基向量都屬于某個(gè),因而是的特征向量. 證畢.推論 復(fù)數(shù)矩陣與對(duì)角陣相似的充要條件是的最小多項(xiàng)式無重根.不利用定理2.2.1,該推論也可證明.下面給出令一種證明.證明 必要性設(shè)A相似diag,所以存在可逆矩陣T使,(為對(duì)角陣),從而,不妨是A的互不相同的特征根記因而 = =而 = = =diag=0所以=0.于是,但是沒有重根,因而沒有重根.充分性 設(shè)為最小多項(xiàng)式的互不相同的根,則由無重根=,于是=0令rank=,則dim=-,所以A共有個(gè)線性無關(guān)的特征向量并且顯然.另一方面.因而又有,故.這就說明了有個(gè)線性無關(guān)的特征向量由定理2.1.1知可對(duì)角化. 證畢.例2. 判下列矩陣是否可以對(duì)角化. (1) (2)解(1)可求的A的特征多項(xiàng)式為由于的最小多項(xiàng)式為的因式,計(jì)算得,.而=0.因此的最小多項(xiàng)式為.顯然的最小多項(xiàng)式是實(shí)數(shù)域上互素的一次因式的乘積,從而由定理2.2.1知A可對(duì)角化. (2)可求得的最小多項(xiàng)式為=由于的最小多項(xiàng)式為的因式,計(jì)算得, =0.因此的最小多項(xiàng)式為.從而由定理2.2.1知不可對(duì)角化. 例3 =E,則與對(duì)角陣相似.(k=1,2)證明 由知A為多項(xiàng)式的零點(diǎn),即=0.因的最小多項(xiàng)式,而無重根,所以無重根,故由推論知與對(duì)角陣相似.對(duì)于單純的判斷一個(gè)線性變換的矩陣能否對(duì)角化運(yùn)用定理2.2.1及其推論是很簡(jiǎn)潔方便的,它部避免了運(yùn)用定理2.1.1的繁瑣過程.但是對(duì)于既要判定某個(gè)數(shù)域上的線性變換的矩陣是否可對(duì)角化,對(duì)于可對(duì)角化的矩陣又要求出相似變換矩陣及矩陣特征值的題目來說運(yùn)用定理2.2.1及推論是達(dá)不到要求的.而運(yùn)用定理2.1.1雖然能達(dá)到要求但方法卻很繁瑣.下面給出的方法僅需利用矩陣的乘法運(yùn)算便可判定一個(gè)矩陣是否相似與對(duì)角陣,并且在判定的過程中簡(jiǎn)潔的構(gòu)造出相似變換矩陣完全不需解性方程組.2.3 矩陣的乘法運(yùn)算法定理2.3.1 設(shè)為階矩陣的全部相異特征值,其重?cái)?shù)分別為,,則A與對(duì)角陣相似的充要條件是=0.(i=1,2,s)證明 必要性若A相似于陣對(duì)角陣,則存在可逆矩陣使得=,其中為階單位矩陣(i=1,2,s)于是=,于是= 由于=0(j=1,2,s).所以=0. 充分性 因?yàn)閷?duì)于任何階矩陣都存在可逆矩陣P,使得A= P,其中為jordan塊(j=1,2,.,s).因此要證可對(duì)角化,只要證=(j=1,2,s),由于 =P所以若.則因P可逆而有(j=1,2,s).又當(dāng)時(shí),可逆,所以,即(j=1,2,s)定理2.3.2 設(shè)時(shí)階矩陣的全部相異特征根,其重?cái)?shù)分別為,則于對(duì)角陣相似的充要條件是的秩為(j=1,2,s). 證明 必要性 =其中分別是階的零矩陣和單位矩陣(j=1,2,s).由于P滿秩且.所以=.充分性 用反證法假設(shè)不可對(duì)角化,則因幾何重?cái)?shù)代數(shù)重?cái)?shù),必至少存在一整數(shù)k使得>,于是時(shí).由sylvester不等式知> =矛盾.所以A可對(duì)角化.推論1 設(shè)為階矩陣的相異的特征根,其重?cái)?shù)為,則矩陣的列向量中由對(duì)應(yīng)于的個(gè)線性無關(guān)的特征向量.證明 因可對(duì)角化,由定理2.3.1得=0,=0.由此,中每一列非零向量都是方程組X=0解向量,即的特征向量.又有定理2.3.2知,所以的列向量組中有恰好對(duì)應(yīng)于的個(gè)線性無關(guān)的特征向量.上述的結(jié)論表明,要構(gòu)造可對(duì)角化矩陣A 的相似變換矩陣,完全可以不像傳統(tǒng)的方法那樣解方程組X=0,而只需對(duì)每一特征值(j=1,2,s)從矩陣乘積中直接找出個(gè)與對(duì)應(yīng)的線性無關(guān)的特征向量,這樣所得的個(gè)特征向量為列作一階矩陣即可.推論2 若階可對(duì)角化矩陣只有兩個(gè)相異特征值(重)和(重),則矩陣(或的 (或)個(gè)線性無關(guān)列向量就是對(duì)應(yīng)(或)的特征向量的極大無關(guān)組. 這一結(jié)論進(jìn)一步表明,在可對(duì)角化矩陣只有2個(gè)相異特征值的情況下,不僅不需要解方程組,而且不需要計(jì)算矩陣的乘積就可以把對(duì)應(yīng)于不同特征值的特征向量立即求出.例4 求下列矩陣A相似變換矩陣. (1)= (2)=解 (1)的特征值=12,=3(二重),由于,所以A可對(duì)角化,有推論2知的一個(gè)特征向量(取的第3列)的2個(gè)線性無關(guān)的特征向量故相似變換矩陣=,(2)A的特征值=-1(二重),=5,=1,而=,由推論2可得的特征向量.的特征向量分別為于是相似變換矩陣為P=A=diag(-1,-1,5,-1).上文討論了矩陣是否可對(duì)角化的判定及矩陣對(duì)角化方法問題,給出了簡(jiǎn)便易行的判定和求法.區(qū)別于傳統(tǒng)的方法,定理2.3.1定理2.3.2及推論把矩陣對(duì)角化問題歸結(jié)為矩陣的乘法運(yùn)算,不需要解方程組就可以得到特征向量及相似變換矩陣,但是上述方法都沒有達(dá)到特征值,特征向量,相似變換矩陣同步求解的效果.下面引入-矩陣,改進(jìn)在一般情形下矩陣對(duì)角化的方法,使判定和求解一步到位并得到矩陣對(duì)角化十分簡(jiǎn)單的方法,主要依據(jù)下面兩個(gè)定理.2.4 引入-矩陣推出數(shù)字矩陣可對(duì)角化的充要條件定理2.4.1 設(shè)A是數(shù)域上的n階方陣,為其特征矩陣E為n階單位陣.如果經(jīng)過初等變換化為對(duì)角陣,則A的特征值為的對(duì)角線上元素的乘積的多項(xiàng)式的根. (證明略)定理2.4.2 在定理2.4.1 的假設(shè)下,如果經(jīng)初等變換化為,且為對(duì)角陣,則(1) 對(duì)于A的每個(gè)特征值,中與的零行對(duì)應(yīng)的行向量生成屬于的特征子空間.(2) 若A的特征值都在內(nèi),設(shè)為A的全部不同的特征值,其重?cái)?shù)分別為,則A可以對(duì)角化的充要條件是中零行的數(shù)目=的重?cái)?shù)(i=1,2,s)證明 (1)因?yàn)榕c的秩為,則總有可逆的-矩陣,使.即對(duì)施行對(duì)應(yīng)的一些行初等變換和對(duì)應(yīng)的一些列初等變換可使化為對(duì)角陣,有 (1)這里相當(dāng)于初等列變換的右乘作用在而不作用于E.因?yàn)?,所以=.于是對(duì)A的每個(gè)特征值有=diag()設(shè)中有個(gè)零行,相應(yīng)的個(gè)為0的對(duì)角元記為,取中對(duì)應(yīng)的列向量,則 =0.因?yàn)榭赡?,所?=0 (2)由于可逆,故列滿秩,從而由(2)知正是屬于的個(gè)線性無關(guān)的特征向量,再從(1)式,注意到中個(gè)非零行是行滿秩的.由中定理1知屬于的線性無關(guān)的特征向量就是中與的零行對(duì)應(yīng)的行向量,他們生成對(duì)應(yīng)的特征子空間.(2) 可對(duì)角化秩=,即=(i=1,2,s) 證畢. 基于以上討論我們不難得到矩陣對(duì)角化的簡(jiǎn)單方法,其步驟如下:(1)對(duì)作初等變換化為,其中,則A的特征值恰是=0的根.(2) 如果的特征向量全在P內(nèi),且對(duì)每個(gè)有中零行數(shù)目=的重?cái)?shù),則可以對(duì)角化,否則不可對(duì)角化.(3) 對(duì)于每個(gè),在中取出與中零行對(duì)應(yīng)的行向量得A屬于線性無關(guān)的特征向量.(4) 若可以對(duì)角化,作可逆矩陣,則,為階矩陣.例5 判定下列矩陣可否對(duì)角化,若可以求可逆矩陣T,使為對(duì)角陣.(1) = (2) =解 故的特征值是(二重),因中的零行數(shù)目的重?cái)?shù),故不可對(duì)角化.(2) 故的特征值為(2重根), .又中零行數(shù)=2=的重?cái)?shù);的零行數(shù)=1=的重?cái)?shù),故可對(duì)角化,且由= 可得出是A屬于2的線性無關(guān)特征向量由=得是屬于-4的線性無關(guān)的特征向量.令T=,則 參考文獻(xiàn)1 北京大學(xué)數(shù)學(xué)系.高等代數(shù).北京:高等教育出版社,第88版,1988. 2 許以超.代數(shù)學(xué)引論.上海:社會(huì)科學(xué)技術(shù)出版社,19663 錢吉林.矩陣及其廣義矩陣.武漢:華中師范大學(xué)出版社. 4 王心介.高等代數(shù)與解析幾何.北京:科學(xué)出版社,2002. 5 張遠(yuǎn)達(dá).線性代數(shù)原理.上海:上海教育出版社,1980. 6 彭海明.對(duì)“矩陣特征值與特征向量同步求解方法探討”的改進(jìn)意見.數(shù)學(xué)通報(bào),1993(2):45-47. 7 劉國(guó)洪.王寶智.利用矩陣的初等行變換對(duì)矩陣的特征值和特征向量同步求解,數(shù)學(xué)通報(bào),1996,2.15

注意事項(xiàng)

本文(矩陣對(duì)角化問題數(shù)學(xué)畢業(yè)論文)為本站會(huì)員(1666****666)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!