鋼筋矯直切斷機(jī)的設(shè)計(jì)
1緒論CAD圖紙,聯(lián)系153893706 11國(guó)內(nèi)外鋼筋矯直切斷技術(shù)的發(fā)展?fàn)顩r 鋼筋矯直切斷機(jī)在建筑行業(yè)運(yùn)用廣泛,國(guó)內(nèi)外對(duì)鋼筋矯直切斷機(jī)的研究也比較多,國(guó)內(nèi)對(duì)于鋼筋矯直切斷機(jī)的需求空間很廣,但國(guó)內(nèi)的矯直切斷機(jī)只能滿(mǎn)足一般的需求,對(duì)于一些矯直精度較高,切斷質(zhì)量要求也較高的鋼筋就無(wú)法滿(mǎn)足了,需要從國(guó)外進(jìn)口有關(guān)設(shè)備,總體來(lái)說(shuō)國(guó)內(nèi)的技術(shù)還落后于國(guó)外。由于冷軋帶肋鋼筋需要經(jīng)矯直切斷后才可使用,但目前對(duì)于冷軋帶肋鋼筋矯直的理論研究還不是很完善,冷軋帶肋鋼筋矯直的無(wú)劃傷問(wèn)題一直沒(méi)有得到很好的解決,冷軋帶肋鋼筋矯直機(jī)的系統(tǒng)參數(shù)設(shè)計(jì)也主要是依據(jù)普通圓鋼筋矯直機(jī)的有關(guān)參數(shù)。國(guó)內(nèi)還沒(méi)有能滿(mǎn)足矯直性能要求的數(shù)控冷軋帶肋鋼筋矯直切斷機(jī),而從國(guó)外進(jìn)口一臺(tái)數(shù)控冷軋帶肋鋼筋矯直切斷機(jī)需要8萬(wàn)美元,一般用戶(hù)難以承擔(dān)。市場(chǎng)上急需一種矯直質(zhì)量較好、自動(dòng)化程度及生產(chǎn)效率較高的矯直切斷機(jī)。國(guó)內(nèi)的機(jī)器最缺少的技術(shù)就是矯直技術(shù)了,而這一方面國(guó)際上有些國(guó)家發(fā)展的較好,如前蘇聯(lián),德國(guó)和日本在這方面起步較早。國(guó)內(nèi)有關(guān)技術(shù)人員也在矯直理論和技術(shù)的研究方面作出了很大的努力,其中有部分成果的水平居領(lǐng)先地位,如列入1998河北省企業(yè)技術(shù)開(kāi)發(fā)第二批計(jì)劃的GTK6/12數(shù)控冷軋帶肋鋼筋矯直切斷機(jī)已經(jīng)解決了有關(guān)技術(shù)上的難題其水平已達(dá)到國(guó)內(nèi)領(lǐng)先地位,它在提高矯直質(zhì)量、保證矯直后鋼筋表面無(wú)劃傷的基礎(chǔ)上,采用了數(shù)控技術(shù),提高了自動(dòng)化程度,實(shí)現(xiàn)了自動(dòng)定長(zhǎng)切斷、記數(shù)(鋼筋長(zhǎng)度、單根重量、總重、鋼筋總數(shù))及自動(dòng)停車(chē)等功能。12冷軋帶肋鋼筋的概述121鋼筋的種類(lèi)建筑上常用的鋼筋分為熱軋鋼筋,冷拉鋼筋,熱處理鋼筋,鋼絲和鋼絞線(xiàn)等許多類(lèi)。 在常溫下對(duì)鋼筋進(jìn)行加工稱(chēng)為“冷加工”。用冷加工方法可以使熱軋鋼筋的強(qiáng)度得以提高,是節(jié)約鋼材行之有效的方法之一。常用的冷加工方法有冷拉和冷拔兩種,近十年來(lái),又發(fā)展了冷軋和冷軋扭等方法。 冷軋帶肋鋼筋是采用強(qiáng)度較低,塑性較好的普通低碳鋼或低合金鋼熱軋圓棚條鋼筋為母材,經(jīng)冷軋或冷拔工藝減徑后在其表面冷軋成具有三面或兩面月牙形的鋼筋。軋制冷軋帶肋鋼筋的普通低碳鋼牌號(hào)為Q215和Q235熱軋圓盤(pán)條鋼筋,低合金鋼牌號(hào)有24MnTi和20MnTi等熱軋圓盤(pán)條鋼筋。鑒于目前國(guó)內(nèi)生產(chǎn)的冷軋帶肋鋼筋的母材品種較多,冷軋加工工藝也不盡相同,冷軋帶肋鋼筋的強(qiáng)度差異較大,國(guó)際冷軋帶肋鋼筋將冷軋帶肋鋼筋分為L(zhǎng)L550、LL650、和LL800三個(gè)級(jí)別。在本課題中所設(shè)計(jì)的鋼筋基本性能。LL550級(jí)鋼筋強(qiáng)度較低,主要用以替代鋼筋混凝土結(jié)構(gòu)中的小直徑熱軋I級(jí)光圓鋼筋,做鋼筋混凝土機(jī)構(gòu)中的受力鋼筋、架立鋼筋、分布鋼筋。LL550級(jí)鋼筋宜用Q215熱軋圓盤(pán)防金軋制,鋼筋的公稱(chēng)直徑有4、5、6、7、8、9、10、12mm八種規(guī)格。冷軋帶肋鋼筋是近三十多年國(guó)外發(fā)展的一個(gè)新鋼種,具有抗拉強(qiáng)度高和延伸率好的特性,與普通熱軋線(xiàn)材比較,可節(jié)約金屬材料3040%以上,并使鋼筋混凝土強(qiáng)度和預(yù)應(yīng)力混凝土構(gòu)件強(qiáng)度提高,節(jié)約水泥。1968年由德國(guó)、荷蘭、比利時(shí)研制成功,七十年代在歐美得到了大力發(fā)展應(yīng)用,并有各自相應(yīng)的國(guó)家標(biāo)準(zhǔn)。我國(guó)起步較晚,自八十年代后期起,我國(guó)開(kāi)始引進(jìn)冷軋帶肋鋼筋生產(chǎn)設(shè)備。先后有南京、蘇州、上海、青島等地分別從德國(guó)、意大利等國(guó)引進(jìn)11套設(shè)備。九十年代中期又有安徽、廣東、江蘇等省的合資或外商獨(dú)資企業(yè),從國(guó)外引進(jìn)幾條生產(chǎn)線(xiàn)。與此同時(shí),國(guó)內(nèi)有些科研單位和企業(yè)著手研制或仿制冷軋?jiān)O(shè)備。迄今已有十多個(gè)單位在生產(chǎn)和銷(xiāo)售冷軋帶肋鋼筋全套設(shè)備,分布于北京、遼寧、江蘇、河北、天津等地。國(guó)家科委已將冷軋帶肋鋼筋列入國(guó)家重點(diǎn)推廣項(xiàng)目。建設(shè)部將它納入“九五”期間建筑業(yè)重點(diǎn)推廣的10項(xiàng)新技術(shù)之一。1997年8月,建設(shè)部將國(guó)家跨世紀(jì)重大技術(shù)推廣工作命名為“廣廈工程”,冷軋帶肋鋼筋的推廣作為“廣廈工程”的先期啟動(dòng)項(xiàng)目最先開(kāi)始實(shí)施。據(jù)不完全統(tǒng)計(jì),僅1998年全國(guó)的推廣量已超過(guò)60萬(wàn)噸。用于城鄉(xiāng)住宅及公共建設(shè)的建筑面積達(dá)1.5億平方米,今后還將有較大的增長(zhǎng)。1.22冷軋帶肋鋼筋的表面形式我國(guó)生產(chǎn)的冷軋戴了鋼筋大部分為三面帶有月牙形橫肋,鋼筋的外形如圖1-1示。橫肋沿鋼筋橫截面周圈上分布,且其中必須有一面的方向與另兩面反向。肋中心線(xiàn)與鋼筋縱軸夾角B為4060。肋兩側(cè)面與鋼筋表面斜角a不得小于45。肋間隙總和應(yīng)不大于公稱(chēng)周長(zhǎng)的20%,即。相對(duì)肋面積f按下式計(jì)算:式中 K=3(三面帶肋);F一個(gè)肋的縱向截面積:B肋與鋼筋軸線(xiàn)的夾角;D鋼筋公稱(chēng)直徑;C肋的間距。在生產(chǎn)實(shí)際中,除三面冷軋帶肋鋼筋外,還有少數(shù)廠(chǎng)家生產(chǎn)兩面帶肋的冷軋鋼筋,有的生產(chǎn)表面有壓痕的冷軋帶肋鋼筋。個(gè)別廠(chǎng)家還生產(chǎn)表面帶陰螺紋的冷軋鋼筋,以減少肋造成的應(yīng)力集中現(xiàn)象。根據(jù)許多單位所做的材料性能實(shí)驗(yàn),兩面冷軋帶肋鋼筋與三面冷軋帶肋鋼筋的力學(xué)性能并無(wú)顯著的區(qū)別。GB13788-92和冷軋帶肋鋼筋混凝土結(jié)構(gòu)技術(shù)規(guī)程未將兩種帶肋鋼筋的力學(xué)性能加以區(qū)別。同時(shí)考慮到三面冷軋帶肋鋼筋應(yīng)用最廣泛,在本文設(shè)計(jì)計(jì)算中將參考三面冷軋帶肋鋼筋的各方面參數(shù)。1.2.3 冷軋帶肋鋼筋基本性能由圖1-2可知,冷軋帶肋鋼筋均無(wú)物理屈服點(diǎn)的硬鋼,則條件屈服強(qiáng)度采用,圖中所示,其曲線(xiàn)表現(xiàn)一段較長(zhǎng)的非彈性過(guò)程,說(shuō)明彈性和塑性關(guān)系比較優(yōu)化,綜合力學(xué)性能較好。對(duì)于LL550級(jí)鋼筋,相當(dāng)于0.91 ,伸長(zhǎng)率按計(jì)算,在新制定的國(guó)家標(biāo)準(zhǔn)中,LL550級(jí)鋼筋伸長(zhǎng)率 8%,與國(guó)際標(biāo)準(zhǔn)規(guī)定相同。LL550級(jí)冷軋帶肋鋼筋的曲強(qiáng)比在0.9左右。JGJ95-95編制組根據(jù)LL550,LL650和LL800級(jí)三種強(qiáng)度級(jí)別,測(cè)得冷軋帶肋鋼筋的彈性模量變化范圍為(1.8881.984)x ,鋼筋的彈性模量E=1.9x .13課題的提出和意義 我們所設(shè)計(jì)的該種鋼筋切斷機(jī)在參考國(guó)內(nèi)已有機(jī)型的基礎(chǔ)上加以改進(jìn),減低了成本,在矯直技術(shù)上又加以改進(jìn),增加了行程開(kāi)關(guān)使其可以自動(dòng)定長(zhǎng)切斷,承料槽也加以改進(jìn),使得鋼筋可以自動(dòng)落下,上面研究重點(diǎn)即課題研究?jī)?nèi)容:1. 針對(duì)冷軋帶肋鋼筋,提出新的系統(tǒng)參數(shù)設(shè)計(jì),提高矯直質(zhì)量、保證矯直后鋼筋表面無(wú)劃傷。2. 針對(duì)新的輥系配置方案,確定力學(xué)模型,精確矯直功率計(jì)算。3. 提高效率,使得矯直速度達(dá)到36m/min,提高了效率,但提高矯直速度的同時(shí)又要保證矯直質(zhì)量。4. 定尺切斷,在36m/min的條件下進(jìn)行切斷,且達(dá)到切斷誤差小于5mm。5. 采用行程開(kāi)關(guān)提高自動(dòng)化程度。實(shí)現(xiàn)自動(dòng)定長(zhǎng)剪切,鋼筋可以自動(dòng)落料。2 鋼筋矯直理論及金屬材料的彈塑性彎曲21矯直理論與技術(shù)總體概況冷軋帶肋鋼筋具備十分顯著的社會(huì)效益和經(jīng)濟(jì)效益,因此將得到廣泛應(yīng)用。但是由于冷軋帶肋鋼筋直徑較細(xì)和受加工方法的限制,一般都是成卷供貨。在使用過(guò)程中,除采用長(zhǎng)線(xiàn)臺(tái)座先張法生產(chǎn)預(yù)應(yīng)力空心板等構(gòu)件不存在矯直外,采用短線(xiàn)法生產(chǎn)預(yù)應(yīng)力構(gòu)件以及做非預(yù)應(yīng)力鋼筋用時(shí),一般多需要經(jīng)過(guò)矯直處理后方可以使用,否則混凝土構(gòu)件中的曲折鋼筋將會(huì)影響構(gòu)件受力性能。因此,鋼筋矯直是鋼筋加工中的一項(xiàng)重要工序。鋼筋矯直切斷機(jī)能自動(dòng)矯直和定尺切斷鋼筋,并可清除鋼筋表面的氧化皮和污跡。同時(shí)要求矯直后鋼筋表面無(wú)劃傷、無(wú)扭轉(zhuǎn)、強(qiáng)度不受損失、切斷長(zhǎng)度準(zhǔn)確。因此,對(duì)冷軋帶肋鋼筋采用的精整技術(shù)矯直工藝和技術(shù)的研究,其作用就愈為突出。對(duì)矯直技術(shù)和理論的研究,目的在于正確的分析和描述矯直過(guò)程中呈現(xiàn)的一系列現(xiàn)象,尋求和實(shí)際相吻合的規(guī)律;確定矯直參數(shù)見(jiàn)的相互關(guān)系,用以指導(dǎo)生產(chǎn);研制和開(kāi)發(fā)新型、高效、高精度的矯直設(shè)備,使鋼材產(chǎn)品的質(zhì)量和精度不斷得到提高。國(guó)外對(duì)矯直理論和技術(shù)的研究起步較早,具有相當(dāng)?shù)膹V泛性,取得了許多研究成果。許多成果已應(yīng)用于實(shí)際生產(chǎn)中,產(chǎn)生了巨大的經(jīng)濟(jì)效益。矯直技術(shù)發(fā)達(dá)的國(guó)家,如前蘇聯(lián)、德國(guó)、英國(guó)和日本等,從四十年代起,生產(chǎn)的矯直設(shè)備就形成了系列產(chǎn)品,在矯直理論、工藝和設(shè)備的研究方面也作了大量的工作,并取得了一批較有影響的成果。國(guó)內(nèi)有關(guān)的技術(shù)人員在矯直理論和技術(shù)的研究方面亦作出了很大的努力,使矯直理論和技術(shù)的研究工作得到了廣泛的重視,并取得了不少令人屬目的研究成果。其中部分成果的水平居領(lǐng)先地位。隨各行業(yè)對(duì)矯直設(shè)備的種類(lèi)、數(shù)量日益增加的需要,我國(guó)目前已形成了自行設(shè)計(jì)和生產(chǎn)板、帶、線(xiàn)、型、管材的矯直設(shè)備的能力,設(shè)備的精度和控制水平也不斷提高。在引進(jìn)和吸收國(guó)外先進(jìn)的矯直設(shè)備和技術(shù)的基礎(chǔ)上,更加高效,高精度的矯直設(shè)備相續(xù)問(wèn)世,不斷的推動(dòng)矯直理論和技術(shù)的研究工作向前發(fā)展。211 國(guó)內(nèi)外對(duì)矯直理論和技術(shù)的研究綜述 新的矯直設(shè)備的出現(xiàn)及矯直技術(shù)的新發(fā)展,必然在很多方面引起對(duì)矯直理論和技術(shù)的深入研究。目前,國(guó)內(nèi)外有關(guān)這方面的研究工作抓喲集中在以下幾個(gè)新型矯直設(shè)備的研制、開(kāi)發(fā)和改進(jìn);產(chǎn)品矯直精度的提高?。212 矯直基本理論和技術(shù)的研究 在矯直基本理論和技術(shù)的研究方面,國(guó)外發(fā)展的較早。二十世紀(jì)六十年代,前蘇聯(lián)的一些研究人員就發(fā)表了全面系統(tǒng)的論述和分析管材的矯直理論、矯直工藝以及介紹管材矯直機(jī)的基本型式和結(jié)構(gòu)的文獻(xiàn)?/近些年來(lái),國(guó)內(nèi)外的科技人員對(duì)矯直參數(shù)問(wèn)題作了很多研究。Ruppin深入探討了多輥彎曲矯直過(guò)程中軸向拉伸載荷和壓下量的關(guān)系,并對(duì)壓下量和矯直效果的關(guān)系做了詳細(xì)的研究,得到了一些有意義的結(jié)論;Rrdolf Bruhl 應(yīng)用旋轉(zhuǎn)矯直機(jī)矯直,深入研究了矯直工藝對(duì)線(xiàn)材性能的影響,給出了詳細(xì)的實(shí)驗(yàn)數(shù)據(jù),指出鋼筋矯直后一般表現(xiàn)為延伸率增大,強(qiáng)度降低,矯直后抗拉強(qiáng)度值平均下降5%?。德國(guó)的W.Uerche 分析了輥式矯直提高棒、帶性能的先決條件和可能性?;Fryderyk Knap 認(rèn)為彎曲后的殘余應(yīng)力是彎曲時(shí)的應(yīng)力和卸載應(yīng)力的集合疊加,最大殘余應(yīng)力發(fā)生在介于線(xiàn)材中心和表面的區(qū)域,彎曲半徑越小,殘余應(yīng)力越大,其研究結(jié)果表明,輥式矯直也可以看成彎曲變形,多輥單方向矯直就可以顯著降低殘余應(yīng)力,矯直過(guò)程中大的彎曲半徑對(duì)殘余應(yīng)力的消除是有利的?。同時(shí)許多研究人員對(duì)矯直機(jī)結(jié)構(gòu)參數(shù)也進(jìn)行了較為深入的研究。結(jié)構(gòu)參數(shù)包括矯直輥的傾斜角度、反彎曲率、接觸長(zhǎng)度、輥身長(zhǎng)度及輥型曲線(xiàn)等,而對(duì)矯直輥輥型的設(shè)計(jì)和研究一直是矯直機(jī)結(jié)構(gòu)單數(shù)研究的中心。資料針對(duì)在管棒材矯直機(jī)的輥型研究中均假定矯直過(guò)程中管棒材是理想圓柱體,而與實(shí)際情況中管棒材均呈彎曲狀態(tài)的情況不相符合的問(wèn)題,作者由等距曲面的觀點(diǎn)出發(fā),研究了管棒材呈彎曲狀態(tài)時(shí)與之接觸的輥型曲面,而且討論了矯直輥的角度調(diào)整問(wèn)題,使得在實(shí)際中得到更好的接觸狀態(tài)。文獻(xiàn)中/則簡(jiǎn)化現(xiàn)有的輥型曲線(xiàn)的理論公式,通過(guò)引入無(wú)量綱的中間變量U,使得用參數(shù)方程表達(dá)的輥型曲線(xiàn)方程式變得便于記憶和求解。文獻(xiàn)中對(duì)有關(guān)問(wèn)題的簡(jiǎn)單、直觀及實(shí)用的處理方法在設(shè)計(jì)中有較好的借鑒作用。文獻(xiàn)5在國(guó)內(nèi)外對(duì)輥型研究成果的基礎(chǔ)上,對(duì)直圓材全接觸雙曲線(xiàn)輥型的研究成果進(jìn)行了系統(tǒng)的總結(jié),并提出了高度概括性的意見(jiàn),找出了更為簡(jiǎn)明的計(jì)算方法和輥型曲線(xiàn)的作圖方法。在文獻(xiàn)13中德國(guó)的W.Guericke 確定矯直扭矩時(shí),考慮了塑性變形區(qū)的長(zhǎng)度和旋轉(zhuǎn)彎曲的變形能,使得計(jì)算結(jié)果的精度得到提高;文獻(xiàn)14對(duì)“313”鋼管矯直機(jī)的矯直力、矯直功率的計(jì)算進(jìn)行了分析,并引入了疊加原理,對(duì)矯直機(jī)的設(shè)計(jì)工作有一定的參考價(jià)值。213對(duì)矯直設(shè)備和矯直質(zhì)量的研究 對(duì)于理論的研究就是為了更好的指導(dǎo)實(shí)踐,所以改進(jìn)現(xiàn)有的矯直設(shè)備,研制和開(kāi)發(fā)新的設(shè)備以及不斷的提高矯直質(zhì)量,一直是研究工作者的目標(biāo)。文獻(xiàn)1523均涉及了這個(gè)問(wèn)題,其中,文獻(xiàn)15對(duì)提高管材的矯直精度的途徑進(jìn)行了探討和試驗(yàn)。提出了“綜合矯直”的理論觀點(diǎn),使多種矯直效果疊加和鞏固,進(jìn)而提高了矯直效果。文16論述了提高矯直質(zhì)量的先覺(jué)條件和可能性,即增加被矯軋材的塑性變形區(qū)的長(zhǎng)度。文獻(xiàn)1723各自發(fā)表了所研制的管材的新型矯直機(jī),從各個(gè)不同的角度使管棒材矯直的精度、生產(chǎn)率和矯直機(jī)的適用范圍等個(gè)方面得到了提高。在眾多的文獻(xiàn)中,文獻(xiàn)3/在使矯直理論系統(tǒng)化方面進(jìn)行了總結(jié)。提出了在各種矯直條件下矯直機(jī)的力能參數(shù)、工藝參數(shù)和結(jié)構(gòu)參數(shù)的計(jì)算和確定方法;同時(shí)還介紹了許多現(xiàn)代矯直技術(shù)和工藝。22對(duì)鋼筋類(lèi)金屬材料彈塑性彎曲的分析221概述 鋼筋在矯直機(jī)上被矯直,是通過(guò)自身的彈塑性彎曲變形來(lái)實(shí)現(xiàn)的。因此,探究鋼筋的矯直原理以及制定矯直方案應(yīng)從研究金屬材料的彈塑性彎曲變形著手。 金屬材料的彈塑性彎曲變形過(guò)程在外力矩作用下的彎曲階段和外力矩去除后的彈性恢復(fù)階段組成。金屬材料在外力矩的作用下彎曲時(shí),除中性層因應(yīng)力為零不會(huì)變形外,其它各層縱向纖維都要發(fā)生伸長(zhǎng)或縮短的變形。外力矩去除后的變形恢復(fù)是個(gè)內(nèi)力釋放過(guò)程,亦稱(chēng)彈性恢復(fù)。金屬材料在矯直過(guò)程中的彈塑性彎曲變形是既有彈性變形又有塑性變形的彎曲,彎曲變形達(dá)到屈服極限之前,各條縱向纖維的變形可以看作簡(jiǎn)單的拉(壓)變形,應(yīng)力與應(yīng)變之間的關(guān)系遵守虎克定律。彎曲變形達(dá)到屈服極限以后,縱向纖維的應(yīng)力與應(yīng)變的關(guān)系呈現(xiàn)為增量的線(xiàn)形關(guān)系,而且必然有一部分變形得不到恢復(fù)被保留下來(lái)而成為永久變形。因此,總變形應(yīng)包括彈性恢復(fù)變形和永久變形或稱(chēng)殘余變形。對(duì)于彎曲,只能說(shuō)總彎曲包括彈性彎曲和塑性彎曲,塑性彎曲并不等于殘余彎曲。僅僅在原始為平直狀態(tài)下進(jìn)行彎曲時(shí),彈復(fù)后的殘余彎曲才等于塑性彎曲。一般的彈塑性彎曲不僅其縱向纖維既有彈性變形又有塑性變形,而且也包含外層纖維的彈塑性變形與內(nèi)層纖維的純彈性變形的雙重含義。在彎曲方式上,有受彎矩作用的純彎曲;有受橫向載荷作用的梁彎曲;有繞過(guò)圓柱體受拉力作用而產(chǎn)生的拉彎;有圓形材料在旋轉(zhuǎn)中受橫向載荷作用而產(chǎn)生的旋轉(zhuǎn)彎曲如圖2-1所示;有板材在軋制過(guò)程中由于變形不均而產(chǎn)生的雙向波浪彎曲。前三種彎曲都屬于單方向的彎曲,稱(chēng)之為一維彎曲;旋轉(zhuǎn)彎曲與波浪彎曲為二維彎曲;綜合彎曲為三維彎曲。 實(shí)際上,在彎曲過(guò)程中,彎曲變形的應(yīng)力應(yīng)變關(guān)系不能簡(jiǎn)化為簡(jiǎn)單彎曲或壓縮的應(yīng)力應(yīng)變關(guān)系。在金屬材料的橫截面上,除表層和中性層以外,各層均處于三向應(yīng)力狀態(tài),如圖2-2所示。材料橫截面上所發(fā)生的應(yīng)力應(yīng)變關(guān)系只與彎曲程度有關(guān)。在材料的縱向,應(yīng)力應(yīng)變的分布與變化情況隨彎曲的類(lèi)型而異。在純彎曲的情況下,材料縱向各截面的應(yīng)力應(yīng)變都是一樣的。在受橫向集中載荷壓彎的情況下,塑性變形區(qū)按拋物線(xiàn)規(guī)律沿縱向分布在兩個(gè)邊層之間,如圖2-3 所示。在受均布載荷的橫向壓力下,塑性變形區(qū)按雙曲線(xiàn)規(guī)律分布在兩個(gè)邊層之間,如圖2-3 所示。拉彎時(shí),塑性變形區(qū)將按一個(gè)特殊的曲線(xiàn)規(guī)律分布在邊層,如圖2-3 所示。根據(jù)平截面原理,各層纖維的變形協(xié)調(diào)關(guān)系必然是線(xiàn)形的,而且塑性變形必將由最外層纖維開(kāi)始。由于鋼筋的彎曲與矯直過(guò)程中曲率半徑值比其本身直徑大得多,從塑性變形的最外層到最內(nèi)層,縱向應(yīng)力都可按1或1.151取值,為了便于理論分析,縱向應(yīng)力極限都按取值,造成的誤差是不大的,也就是不計(jì)三向應(yīng)力的影響來(lái)處理鋼筋的彎曲和矯直問(wèn)題。2.22彈塑性彎曲的變形過(guò)程 軋件在矯直機(jī)上的彈塑性彎曲的變形過(guò)程,實(shí)際上是一個(gè)橫向彎曲過(guò)程。矯直時(shí),軋件在橫向力作用下產(chǎn)生彎曲變形,纖維的變形如圖2-4所示。根據(jù)外載荷的大小,軋件的彎曲變形有如下三種情況:(1)純彈性彎曲變形 在外載荷作用下,其所受外力矩較小,軋件表層的最大應(yīng)力小于材料的屈服極限(其應(yīng)力狀態(tài)如圖2-5a所示),其余各層的縱向纖維都處于彈性變形狀態(tài)。外載荷去除后,在彈性?xún)?nèi)力矩作用下,各層縱向纖維的變形將全部恢復(fù)。這種彎曲變形稱(chēng)之為純彈性變形。這是最大的彈性彎曲狀態(tài),又是最小的彈塑性彎曲狀態(tài)。(2)彈塑性彎曲 隨著外載荷的增加,軋件各層纖維繼續(xù)產(chǎn)生變形。當(dāng)所受外力矩達(dá)到一定數(shù)值后,軋件表層縱向纖維應(yīng)力超過(guò)了材料的屈服極限,靠近表面層一部分區(qū)域的纖維層產(chǎn)生塑性變形。外力矩越大,塑性變形區(qū)由表層向中性層擴(kuò)展的深度越大(其應(yīng)力狀態(tài)如圖2-5b所示)。去除外載荷后,在彈性?xún)?nèi)力矩作用下,各層縱向纖維的變形可彈性恢復(fù)一部分,但無(wú)法全部恢復(fù),軋件中將保留殘余應(yīng)變和殘余應(yīng)力。這種彎曲變形稱(chēng)為彈塑性彎曲變形。(3)純塑性彎曲變形 隨著外載荷的繼續(xù)增大,整個(gè)軋件斷面上的縱向纖維應(yīng)力都超過(guò)了材料的屈服極限(其應(yīng)力狀態(tài)如圖2-5c所示),所有縱向纖維都處于塑性變形狀態(tài)。去除外載荷后,在彈性外力矩作用下,縱向纖維的變形只能恢復(fù)彈性變形部分。這種彎曲變形稱(chēng)為純塑性彎曲變形。由此可知:(a)在外載荷的作用下,有軋件中同時(shí)有彈性變形和塑性變形的彎曲變形稱(chēng)為彈塑性變形;(b)軋件彈塑性彎曲變形過(guò)程由兩部分組成;在外載荷的作用下的彈塑性彎曲階段和去除外載荷后的彈性恢復(fù)階段。223彈塑性彎曲的彎矩2231理想金屬材料彈塑性彎曲的彎矩 彎矩是引起軋件彎曲變形的外因,任何彎曲狀態(tài)都是內(nèi)力與外力平衡的結(jié)果。在這里,本文只討論圓形斷面金屬材料的彎矩。按圖2-6的應(yīng)力應(yīng)變模型,求其彈塑性彎矩為將=z/R代入上式,積分后將=R/R代入并整理,得式中彈區(qū)比,= M彈性極限彎矩,其塑彎比為當(dāng)>0時(shí),得最大塑彎比為1.7,則最大彈塑性彎矩為1.7Mt。 為了在以后矯直理論分析的需要,下面對(duì)原形彎曲塑性區(qū)的分布規(guī)律加以明確。按圖2-7及內(nèi)外彎矩的平衡條件可知故 這是一條類(lèi)似立方拋物線(xiàn)的-x曲線(xiàn),它隨L及F值的改變而改變。如使材料中點(diǎn)受力最大,即達(dá)到極限彈塑性彎矩時(shí),得將此值代入式(2-2)后,得式(2-3)表示一條在材料中點(diǎn)產(chǎn)生“塑性鉸”的塑性區(qū)分布規(guī)律的曲線(xiàn),圖2-7中的-x曲線(xiàn)。在最大載荷情況下,極限彈塑性彎矩Mt發(fā)生在 處,即材料中點(diǎn)兩側(cè)0.21L范圍內(nèi)為塑性變形區(qū)S=0.42L. 在這種載荷作用下,塑性區(qū)內(nèi)各截面的塑彎比 的變化規(guī)律可由下式看出 與x的線(xiàn)形關(guān)系,它同圖上M-x曲線(xiàn)的Mt以下部分是一致的。 圓材的 關(guān)系,即式(2-1)所代表的曲線(xiàn),與-x曲線(xiàn)相似而方向反。224 強(qiáng)化金屬材料彈塑性彎曲的彎矩冷軋帶肋鋼筋為強(qiáng)化金屬材料。由于強(qiáng)化金屬材料的屈服限不大明顯,在塑性區(qū)內(nèi)存在著彈性增強(qiáng)現(xiàn)象;塑性區(qū)的范圍又較窄,容易出現(xiàn)表面裂紋損傷等原因。要使軋件產(chǎn)生足夠的塑性變形,常需適當(dāng)加大其彎曲程度和增加彎曲次數(shù)。這就要求盡量精確的計(jì)算其彎曲力矩和其彎矩的最大許可值,以及與此最大許可值相對(duì)應(yīng)的最大彎曲程度,以此來(lái)確定其設(shè)備能力和工藝方案。由塑彎比強(qiáng)化法則,即強(qiáng)化材料的塑彎比等于理想塑彎比減去強(qiáng)化系數(shù)與理想塑彎比的乘積,再加上強(qiáng)化系數(shù)與彈區(qū)比的比值。得圓形斷面塑彎比為 其強(qiáng)化彎矩為由式(2-5)式中邊層應(yīng)力比; 邊層最大應(yīng)力。代入(2-4)中,求出225彈塑性彎曲的變形能2251一次彎曲的變形能 材料彎曲時(shí)外力作功的一部分用于彈性變形;另一部分用于塑性變形;還有一小部分變成熱量而散失。為了計(jì)算矯直功率,需要把它們分開(kāi)計(jì)算出來(lái),首先討論的是前兩種變形所需之能量。計(jì)算彈塑性彎曲變形能可以采取兩種方法:一是用彎矩曲率關(guān)系式,即MC曲線(xiàn)進(jìn)行積分求得;另一是采用變形與壓力關(guān)系的積分求得。由文獻(xiàn)25的理想金屬的一次彎曲變形能為其中 彈性變形能,E塑性變形能,即對(duì)于多次彎曲,第二次彎曲的屈服點(diǎn)稍有降低,其余各次彎曲的屈服點(diǎn)基本一致,可以認(rèn)為矯直過(guò)程中的反復(fù)彎曲所需之彎矩和變形功基本不受彎曲次數(shù)的影響,而只與彎曲程度有關(guān)。也就是說(shuō),一次彎曲與多次反復(fù)彎曲,其變形能的計(jì)算方法是一樣的,兩者只有次數(shù)之差。2252強(qiáng)化金屬材料的彎曲變形能 如前所述,則在考慮強(qiáng)化金屬材料的一維彎曲變形能時(shí),只需求出一次彎曲變形能即可。對(duì)于圓形斷面材料,按圖2-8和圖2-9,先寫(xiě)出彈性變形能積分式將; ;代入上式, 可得塑性變形能的積分式為積分得總變形能為彈性變形能和塑性變形能之和,當(dāng)彎曲次數(shù)為n時(shí),式2-10乘以n即可。226旋轉(zhuǎn)彎曲的變形能2261理想金屬旋轉(zhuǎn)彎曲的變形能 旋轉(zhuǎn)彎曲的彈塑性變形常發(fā)生在軸類(lèi)零件的超負(fù)荷工作中及圓材旋轉(zhuǎn)矯直過(guò)程中。在本課題中,轉(zhuǎn)轂轉(zhuǎn)動(dòng)而鋼筋只向前運(yùn)動(dòng),但這與一般形式斜 矯直中(鋼筋旋轉(zhuǎn)前進(jìn)),矯直 與被矯直鋼筋的相對(duì)運(yùn)動(dòng)方式一樣。因此,在這里仍采用旋轉(zhuǎn)彎曲這一概念。為了分析上的方便,取單位長(zhǎng)度圓材,求出其在彈塑性彎曲狀態(tài)下,轉(zhuǎn)轂旋轉(zhuǎn)一周時(shí)所需能量。按圖2-10所示的圓形斷面瞬時(shí)應(yīng)力應(yīng)變模型,轉(zhuǎn)轂旋轉(zhuǎn)一周后,在斷面上形成彈塑性變形的環(huán)形區(qū),其寬度在Rt與R兩個(gè)半徑區(qū)。Rt以?xún)?nèi)的圓面積為純彈性變形區(qū)。在這個(gè)區(qū)域內(nèi)彈性變形將隨著轉(zhuǎn) 的旋轉(zhuǎn),一邊增加,一邊彈回。在轉(zhuǎn)轂旋轉(zhuǎn)一周內(nèi),圓材每條縱向纖維所消化的能量和所反饋的能量是相等的。因此其彎曲狀態(tài)就是它的彈性變形的能量狀態(tài),同一次彎曲的彈性變形能相同。而塑性變形,以微小面積dA來(lái)說(shuō),轉(zhuǎn)轂由零位轉(zhuǎn)到/2時(shí),為鋼筋逐漸拉伸過(guò)程;轉(zhuǎn)轂由/2轉(zhuǎn)到時(shí),是鋼筋的彈性變形部分得到恢復(fù),塑性變形部分被殘留下來(lái)的過(guò)程;轉(zhuǎn)轂由轉(zhuǎn)到3/2時(shí),將是鋼筋的逐漸壓縮過(guò)程,轉(zhuǎn)轂由3/2轉(zhuǎn)到2時(shí),將是鋼筋壓縮得到恢復(fù)、塑性壓縮被殘留下來(lái)的過(guò)程。因此,轉(zhuǎn)轂旋轉(zhuǎn)一周之后,純消耗的能量是塑性變形能。于是旋轉(zhuǎn)彎曲的彈性變形能可由文獻(xiàn)3中的一次彎曲彈性變形能求出而塑性變形能可由下面的積分式求出將 代入上式,積分整理得壓彎之后的總的變形能為 23本章小結(jié)本章運(yùn)用材料力學(xué)和彈塑性力學(xué)的基本原理,分析了金屬材料彈塑性彎曲的變形過(guò)程,引入彈區(qū)比的概念,并應(yīng)用彈區(qū)比系數(shù),強(qiáng)化系數(shù),推導(dǎo)計(jì)算了強(qiáng)化金屬材料的彈塑性彎曲的彎矩。運(yùn)用變形能概念,詳述了理想金屬材料和強(qiáng)化金屬材料的一次彎曲和多次彎曲過(guò)程,及其旋轉(zhuǎn)彎曲過(guò)程,并計(jì)算了相應(yīng)的變形能公式,為以后的矯直力功率的計(jì)算打下了理論基礎(chǔ),為進(jìn)一步闡述矯直原理作了很好的理論鋪墊。3 矯直裝置的選取和分析3.1矯直原理可用于盤(pán)條料矯直的方法有反彎矯直、拉伸矯直、拉彎矯直及旋轉(zhuǎn)矯直等。3.1.1反彎矯直、拉伸矯直及拉彎矯直反彎矯直是發(fā)展最早的矯直方法,它是直觀地將彎曲的金屬條料,根據(jù)原始的彎曲程度不同,加以不同程度的反向彎曲,達(dá)到矯直的目的。為適應(yīng)大量生產(chǎn)的要求,常采用一種連續(xù)式多輥遞減壓下的反彎矯直方法。該方法比較適合于板材的一維彎曲矯直。拉伸矯直法是不管軋材原始彎曲形態(tài)如何,只要拉伸變形超過(guò)金屬的屈服極限,并達(dá)到一定程度,使各條縱向纖維的彈復(fù)能力趨于一致。這樣在彈復(fù)后,軋材即被矯直。拉伸矯直是全斷面同時(shí)被拉伸,容易拉裂或拉斷軋材,如果在拉伸的同時(shí)加上反復(fù)的彎曲,則各斷面將在不同時(shí)間內(nèi),兩側(cè)都受到較大的拉伸變形,從而取得很好的矯直效果,這就是拉伸矯直。 拉伸和拉彎矯直雖然動(dòng)力消耗小,但矯直設(shè)備縱向長(zhǎng)度太長(zhǎng),不宜和剪切機(jī)配合使用。并且比較適合薄板矯直,對(duì)于盤(pán)條料,斷面常為圓形,由于在全圓周各個(gè)方向上抗彎能力的一致性,造成了圓材彎曲方向的隨機(jī)不定,所以采用平面性多輥反彎矯直法對(duì)圓材進(jìn)行矯直,很難達(dá)到滿(mǎn)意的矯直下效果。從以上的分析可看出,反彎矯直、拉伸矯直和拉彎矯直方法都不太適合盤(pán)條料的高效矯直。3.1.2旋轉(zhuǎn)矯直 鑒于單純的反彎矯直存在上述問(wèn)題,針對(duì)具有圓斷面或類(lèi)圓斷面的棒材,如果棒材能一面旋轉(zhuǎn),一面進(jìn)行反彎矯直,正好可以得到全圓周性的矯直效果。圓材軸向纖維在經(jīng)受了較大的彈塑性變形后,彈復(fù)能力逐漸趨于一致,這種變形的反復(fù)次數(shù)越多,彈復(fù)能力越接近一致,矯直質(zhì)量越好。在旋轉(zhuǎn)矯直中最常見(jiàn)的方法是多斜輥矯直,在一般斜輥矯直機(jī)中,被矯直鋼筋一邊旋轉(zhuǎn),一邊進(jìn)行反彎矯直,在螺旋前進(jìn)過(guò)程中各斷面受到多次彈塑性彎曲,最終消除各方向的彎曲,得到全周性的矯直效果。據(jù)圖3-1得出一般斜輥矯直機(jī) 子與鋼筋的轉(zhuǎn)速,分別如下: (3-1) (3-2)式中 v-矯直速度(mm/min); D-輥?zhàn)愚D(zhuǎn)動(dòng)直徑(mm); d-鋼筋公稱(chēng)直徑(mm); a-輥?zhàn)觾A斜角度(。)。由式(3-2)可看出,當(dāng)d值減少而其它條件不變時(shí),nd值會(huì)增大。另一方面,為保證一定的生產(chǎn)率(以重量計(jì)),nd值將進(jìn)一步增大,產(chǎn)生很大的離心力,由此在導(dǎo)向裝置上將產(chǎn)生很大的沖擊、振動(dòng)和噪音。另外,鋼筋長(zhǎng)度較長(zhǎng)時(shí)容易產(chǎn)生甩尾現(xiàn)象,有時(shí)可能造成人身事故。當(dāng) 值超過(guò)一定數(shù)值時(shí),鋼筋加劇振動(dòng),撞擊設(shè)備,產(chǎn)生擦傷和扭曲現(xiàn)象。顯然,這種旋轉(zhuǎn)矯直方法,也不適合于盤(pán)條料的邊開(kāi)卷邊矯直的生產(chǎn)要求。所以,當(dāng)矯直直徑小的盤(pán)料鋼筋時(shí),采用轉(zhuǎn)轂式矯直機(jī)。圖3-1 斜輥矯直時(shí)鋼筋與矯直輥的關(guān)系轉(zhuǎn)轂矯直也是一種旋轉(zhuǎn)矯直方法,但該矯直方法是利用轉(zhuǎn)轂的旋轉(zhuǎn)代替圓材的旋轉(zhuǎn),可達(dá)到同樣的矯直目的。而且由于圓材不旋轉(zhuǎn),因此很適合于邊開(kāi)卷邊矯直的盤(pán)料。3.1.2.1孔模式轉(zhuǎn)轂矯直法 如圖3-2所示為轉(zhuǎn)轂矯直法中的一種孔模式轉(zhuǎn)轂矯直裝置的簡(jiǎn)圖。它是發(fā)展最早的一種轉(zhuǎn)轂矯直裝置。由于孔模的交錯(cuò)布置,使圓材在前進(jìn)中要經(jīng)受多次反彎。孔模數(shù)越多,反彎次數(shù)越多。這個(gè)彎曲次數(shù)屬于低頻彎曲次數(shù)。由于孔模隨轉(zhuǎn)轂旋轉(zhuǎn),由此圓材的彎曲變成了全圓周性的旋轉(zhuǎn)彎曲,它屬于高頻彎曲。但由于孔模沒(méi)有送料作用,故在轉(zhuǎn)轂前后要裝設(shè)送料和拉料輥?zhàn)?,轉(zhuǎn)轂矯直機(jī)所用的孔模按等間距配置在轉(zhuǎn)轂內(nèi),其交錯(cuò)的偏心量可調(diào),孔模的形狀可作成圓孔形或開(kāi)口形,如圖3-2所示。兩端孔模起定位作用,中間孔模起反彎作用,孔模常采用偶數(shù)個(gè),以減少偏心量。拉料輥與送料輥同時(shí)工作,因此兩者常采用一個(gè)電機(jī)帶動(dòng)。1-送料輥 2-轉(zhuǎn)轂 3-孔模 4-拉料輥圖3-2 孔模式轉(zhuǎn)轂矯直機(jī)簡(jiǎn)圖但孔模式轉(zhuǎn)轂矯直本身有許多缺點(diǎn):1)摩擦損失大;2)孔模的消耗大;3)圓材表面容易損傷;4)頭部送料困難;5)因轉(zhuǎn)動(dòng)摩擦力很大,盤(pán)料尾部常隨轉(zhuǎn)轂轉(zhuǎn)動(dòng),得不到矯直,造成損耗大;6)送料受阻時(shí),孔模將把條材磨細(xì),甚至磨斷。采用斜輥代替孔模,即斜輥式轉(zhuǎn)轂矯直,會(huì)顯著地克服上述缺點(diǎn)。因而又發(fā)展了斜輥式轉(zhuǎn)轂矯直方法。3.1.2.2斜輥式轉(zhuǎn)轂矯直法 轉(zhuǎn)轂內(nèi)裝有多個(gè)傾斜布置的矯直輥,與鋼筋保持相適應(yīng)的角度,構(gòu)成多個(gè)彎曲單元。矯直過(guò)程中,斜輥隨轉(zhuǎn)轂高速公轉(zhuǎn)的同時(shí),斜輥繞本身軸線(xiàn)自轉(zhuǎn),鋼筋從矯直輥所形成的孔形中通過(guò)(鋼筋被拉動(dòng)而不轉(zhuǎn)動(dòng)),在前進(jìn)過(guò)程中鋼筋各斷面受到多次彈塑性彎曲,最終消除各方向的彎曲,得到全周性的矯直效果。圓材軸向纖維經(jīng)受較大的彈塑性變形后,彈復(fù)能力逐漸趨于一致。各條軸向纖維在全長(zhǎng)范圍上都經(jīng)過(guò)數(shù)次以上的由小到大,再由大到小的拉壓變形。在此過(guò)程中,即使由于原始狀態(tài)不同而經(jīng)受的變形量互有差異,但只要變形是足夠的,彈復(fù)能力就必將是接近的。這種變形反復(fù)次數(shù)越多,彈復(fù)能力越接近一致,矯直質(zhì)量越好。該方法用斜輥代替孔模,以克服上述孔模式矯直的缺點(diǎn)。同時(shí)斜輥還有送料作用,使?fàn)恳佅牡墓β蕼p少很多甚至僅起導(dǎo)向作用,其矯直原理和斜輥矯直機(jī)一樣。圖3-3所示為多輥式轉(zhuǎn)轂矯直機(jī)簡(jiǎn)圖,也可以采用二輥式轉(zhuǎn)轂矯直方法,這種矯直機(jī)的牽引輥只需考慮承受一定的壓緊力,以保證圓材不隨轉(zhuǎn)轂轉(zhuǎn)動(dòng)。1- 鋼筋 2-轉(zhuǎn)轂 3-矯直輥 圖3-3多輥式轉(zhuǎn)轂矯直機(jī)簡(jiǎn)圖采用斜輥式轉(zhuǎn)轂矯直機(jī)矯直的優(yōu)點(diǎn)是:(1)鋼筋在矯直過(guò)程中不旋轉(zhuǎn),沒(méi)有甩尾現(xiàn)象,鋼筋表面不受損傷,特別適合帶肋鋼筋的矯直。(2)由于采用復(fù)合輥系,個(gè),鋼筋在全長(zhǎng)范圍內(nèi)都獲得了矯直,矯直精度高。同時(shí)也克服了二輥框架矯直機(jī)速度低、側(cè)導(dǎo)板磨損嚴(yán)重和咬入困難的缺點(diǎn)。(3)結(jié)構(gòu)簡(jiǎn)單,既可矯直直定尺料,也可矯直盤(pán)卷料。 但若用它矯直粗鋼筋時(shí),由于轉(zhuǎn)轂的離心力與其半徑的立方成正比,則旋轉(zhuǎn)速度將受到限制而不宜采用,故僅適合于矯直直徑較小的鋼筋。冷軋帶肋鋼筋的截面最近似于圓形。因此,在本設(shè)計(jì)中采用斜輥式轉(zhuǎn)轂矯直法。3.1.2.3斜輥式轉(zhuǎn)轂矯直矯直原理 轉(zhuǎn)轂式斜輥矯直采用交變彎曲小變形矯直方案,基本原則是,進(jìn)入輥的棒材,經(jīng)過(guò)反彎和彈復(fù)后,其最大原始曲率應(yīng)完全消除。其優(yōu)點(diǎn)是在原始曲率值較大時(shí),能較快地消除原始曲率的差值,而在原始曲率值較小時(shí),可以節(jié)省功率。下面分析轉(zhuǎn)轂式斜輥矯直過(guò)程中鋼筋所受的變形情況。參見(jiàn)圖4-5,在其彎矩圖中,M-x的關(guān)系為在x=lt處, M= Mt=Flt/2 ; S代表彈塑性變形區(qū)長(zhǎng)度。S以外部分為彈性變形區(qū),這一區(qū)間的長(zhǎng)度用表示,兩端對(duì)稱(chēng)。圖中c為彈性邊界曲線(xiàn), 關(guān)系式為: 此式表明,在塑性區(qū)內(nèi)值隨著x的減少而迅速減少,即塑性變形迅速深入,直到鋼筋中心處,鋼筋通過(guò)矯直輥的過(guò)程恰好是塑性區(qū)由小變大,再由大變小的變化過(guò)程,因此周?chē)織l軸向纖維的變形將是不一致的。但是隨著前進(jìn)中轉(zhuǎn)轂旋轉(zhuǎn)次數(shù)的增加,可以明顯減少這種不一致性。圖3-4 多斜輥矯直的彎曲矩與塑性變形區(qū)在S區(qū)內(nèi),當(dāng)高頻轉(zhuǎn)數(shù)達(dá)到4以上時(shí),鋼筋矯直效果有明顯提高,但提高高頻轉(zhuǎn)速受到各方面的限制,如轉(zhuǎn)轂在高頻轉(zhuǎn)速中因偏心而產(chǎn)生很大的離心力,產(chǎn)生振動(dòng)和噪音;鋼筋尾部容易產(chǎn)生甩尾現(xiàn)象,造成事故等。增加矯直輥輥數(shù)相當(dāng)于增加低頻彎曲次數(shù),加長(zhǎng)塑性區(qū),假設(shè)采用5個(gè)矯直輥,等于把S區(qū)擴(kuò)大3倍,若在每個(gè)矯直輥下的S區(qū)內(nèi)的高頻轉(zhuǎn)數(shù)為4,則相當(dāng)于在S區(qū)內(nèi)轉(zhuǎn)轂旋轉(zhuǎn)12次,也等于增加了鋼筋的高頻彎曲次數(shù),而且在各個(gè)矯直輥下鋼筋變形不同步性,進(jìn)一步保證鋼筋的矯直質(zhì)量。由此可以得出對(duì)斜輥矯直理論的幾點(diǎn)概括:1) 斜輥矯直不是依靠壓下量的遞減,而是依靠鋼筋在轉(zhuǎn)轂內(nèi)前進(jìn)過(guò)程中所受彈塑性彎曲的由小到大,再由大到小的連續(xù)變化,使得鋼筋變直。2) 斜輥矯直主要依靠足夠的接觸區(qū)長(zhǎng)度及在接觸區(qū)一定的高頻彎曲次數(shù),而不是單單依靠矯直輥數(shù)目的增加。不過(guò)增加矯直輥數(shù)目對(duì)提高矯直速度的影響更為重要。3) 斜輥矯直的壓下量不需采用大變形方案。同時(shí)注意在轉(zhuǎn)瞽式斜輥矯直過(guò)程中,后面矯直輥的壓下量應(yīng)比前面矯直輥的壓下量小些。4) 增設(shè)壓緊輥和正確設(shè)計(jì)輥型對(duì)斜輥矯直矯直質(zhì)量有重要影響。5) 斜輥矯直中矯直輥的傾斜角度不僅對(duì)于接觸條件及高頻彎曲次數(shù)有直接影響,也對(duì)于保證鋼筋各個(gè)斷面的變形在各矯直輥下不發(fā)生同步性的重復(fù)有決定作用。3.2冷軋帶肋鋼筋矯直機(jī)矯直系統(tǒng)參數(shù)設(shè)計(jì)在本設(shè)計(jì)中,采用1-1-2(3/3)輥系方案,曲線(xiàn)輥與鋼筋保持相適應(yīng)的角度,六個(gè)斜輥隨轉(zhuǎn)轂高速旋轉(zhuǎn),同時(shí)斜輥繞本身軸線(xiàn)轉(zhuǎn)動(dòng),使得在矯直過(guò)程中,輥?zhàn)优c鋼筋之間的摩擦形式由滑動(dòng)變?yōu)闈L動(dòng),大大減少了兩者之間的摩擦損耗。被矯的冷軋帶肋鋼筋在輥間前進(jìn)過(guò)程中,鋼筋軸向各條纖維都經(jīng)受一次以上的由小到大,再由大到小的拉壓變形,從而得到圓周性的矯直效果,最終達(dá)到一定的矯直精度。且能塑性變形反復(fù)的次數(shù)越多,矯直精度越好。其結(jié)構(gòu)簡(jiǎn)圖如圖4-6所示:圖 3-5輥系配置示意圖3.2.1矯直輥的研究設(shè)計(jì)3.2.1.1輥形的設(shè)計(jì) 鋼筋的矯直質(zhì)量,很大程度上決定于輥形的設(shè)計(jì)。合理的矯直工藝對(duì)輥形的要求是,盡量增加鋼筋與輥?zhàn)咏佑|區(qū)的長(zhǎng)度,增大接觸面積,并且在接觸區(qū)內(nèi)盡量使彎曲率一致。按照這一思想,在直鋼筋的條件下導(dǎo)出理論輥形曲線(xiàn)公式,盡管有不同的表達(dá)形式,但均代表同一條曲線(xiàn)。在實(shí)際矯直過(guò)程中,由于斜輥的壓下量,使鋼筋產(chǎn)生一定程度的反向彎曲,形成帶有一定曲率的鋼筋與輥?zhàn)咏佑|。因此實(shí)際輥形與理論輥形曲線(xiàn)相比必然有一定的誤差。理論輥形曲線(xiàn)Rx的表達(dá)式為:式中 X-從輥腰()到所取截面(垂直于輥?zhàn)虞S線(xiàn))的距離(mm); Rx-距輥腰 處的輥形半徑(mm); Ro-矯直輥輥腰半徑(mm); r-被矯鋼筋的最大半徑(mm); a-矯直輥傾角(。); -矯直輥對(duì)鋼筋的包角。 在實(shí)際設(shè)計(jì)中, 值與理想假設(shè)有所不同,假定為,則求的近似輥形 : (3-3)根據(jù)文獻(xiàn)12,光圓鋼筋矯直時(shí),輥?zhàn)油摻畹慕佑|點(diǎn)E只能在B和D點(diǎn)之間,且假設(shè)點(diǎn)E為點(diǎn)B和點(diǎn)D的中點(diǎn)。如圖3-6所示,剖面線(xiàn)處為冷軋帶肋鋼筋正截面圖。當(dāng)與光圓鋼筋同一公稱(chēng)直徑d的冷軋帶肋鋼筋被矯直時(shí),考慮到冷軋帶肋鋼筋的表面形狀,為保證矯直后的鋼筋無(wú)劃傷,矯直輥面應(yīng)與鋼筋的最大截面相接觸,在A-A截面中,截面形狀不規(guī)則,以最小橢圓包絡(luò)截面。冷軋帶肋鋼筋外徑r1大于公稱(chēng)半徑r,輥?zhàn)由宵c(diǎn)B和點(diǎn)D發(fā)生變化。鋼筋外徑接觸點(diǎn)E發(fā)生變化,靠近D點(diǎn),而不是取點(diǎn)B和點(diǎn)D中間,設(shè)定E點(diǎn)所對(duì)應(yīng)的中心角 為: (3-4)式中、 分別為B、D兩點(diǎn)所對(duì)應(yīng)的中心角。角度由公式(3-5)確定 (3-5)而角度由下述方法求出。橢圓方程為: (3-6)將B點(diǎn)的橫坐標(biāo)代入式(3-6),求得B點(diǎn)的縱坐標(biāo)為圖3-6 輥形設(shè)計(jì)分析 由此可以求出角度的正切值:得 設(shè)定取 1.081.13即得 (3-8) (3-9)將式(3-8)和式(3-9)代入式(3-4),最后取得: (3-10)將公式(3-8)代入公式(3-4)即可看出,任一位置X處的矯直輥半徑與r和有關(guān),可以表示為即矯直輥輥形與基準(zhǔn)鋼筋半徑r、矯直輥輥腰半徑、矯直輥傾角等原始參數(shù)有關(guān)。3.2.1.2 基準(zhǔn)鋼筋半徑r的選取 本文認(rèn)為,應(yīng)以矯直鋼筋平均直徑的偏大值來(lái)設(shè)計(jì)直輥,首先是因?yàn)橐猿C直機(jī)矯直范圍中的之間鋼材為基準(zhǔn)設(shè)計(jì)矯直輥,當(dāng)用于矯直可矯鋼筋范圍中的最大和最小鋼筋時(shí),矯直機(jī)調(diào)整幅度?。黄浯问且?yàn)樵谄渌鼌?shù)相同的情況下,基準(zhǔn)直徑越大,輥形愈平緩,(見(jiàn)圖4-8)矯直輥的磨損均勻性也就愈好,鋼筋表面產(chǎn)生劃傷的可能性也就愈小。這是因?yàn)檗D(zhuǎn)轂旋轉(zhuǎn)角速度是一定的,與每個(gè)矯直輥相接觸的鋼筋上只有一點(diǎn)與矯直輥無(wú)相對(duì)滑動(dòng),而其它各點(diǎn)與矯直輥均存在相對(duì)滑動(dòng),而矯直輥輥形愈平緩,矯直輥輥面上各點(diǎn)的旋轉(zhuǎn)線(xiàn)速度差就越小,矯直輥與被矯鋼筋接觸線(xiàn)上各點(diǎn)的相對(duì)滑動(dòng)速度也就越小,矯直輥的磨損也就灰愈均勻,鋼筋表面產(chǎn)生劃傷的可能性就會(huì)愈小。即圖3-7 矯直輥輥形比較3.2.1.3輥腰直徑與輥距的設(shè)計(jì) 在選定基準(zhǔn)鋼筋半徑r后,就應(yīng)根據(jù)實(shí)際需要選擇矯直速度,而矯直速度與矯直輥輥腰直徑及矯直輥傾角有關(guān),所以 的選擇應(yīng)考慮其對(duì)矯直速度的影響。此外矯直輥輥腰半徑 的選擇還應(yīng)考慮矯直穩(wěn)定性和矯直輥的磨損均勻性。在其它參數(shù)相同的情況下, 越大,矯直輥輥形越平緩(見(jiàn)圖3-8),矯直輥磨損就越均勻,也不易在被矯直鋼筋表面產(chǎn)生劃傷等矯直缺陷,但輥形越平緩,矯直輥對(duì)被矯鋼筋的約束能力就越弱,矯直時(shí)鋼筋易偏離矯直中心線(xiàn),矯直穩(wěn)定性就越差。此外,在矯直輥旋轉(zhuǎn)角速度一定的情況下,越大,矯直速度也就越大,產(chǎn)量也就越高。反之,則情況相反。同時(shí), 在斜輥矯直中,由于鋼筋與矯直輥的接觸線(xiàn)較長(zhǎng),從而不必按斜輥接觸強(qiáng)度來(lái)計(jì)算輥徑。輥腰直徑比輥端直徑細(xì),且輥身較長(zhǎng),因此要求輥?zhàn)佑凶銐虻膹澢鷱?qiáng)度,輥?zhàn)拥膬啥瞬粌H有可能與壓彎的鋼筋相接觸而且是鋼筋在矯直時(shí)必須通過(guò)的部分,因此,輥端成圓角。矯直輥輥長(zhǎng)的選擇首先要 保證鋼筋與矯直輥之間的接觸線(xiàn)達(dá)到足夠的長(zhǎng)度,以滿(mǎn)足矯直輥和鋼筋的接觸長(zhǎng)度要求,避免因應(yīng)力過(guò)大而造成壓痕、劃傷等矯直缺陷;其次,輥長(zhǎng)的選擇還要與輥距相匹配,以保證機(jī)器結(jié)構(gòu)尺寸要求。在統(tǒng)計(jì)數(shù)據(jù)的基礎(chǔ)上,用類(lèi)比法進(jìn)行了參數(shù)的確定。 輥腰半徑 R0=(2.55)r輥?zhàn)尤L(zhǎng) 圖3-8 矯直輥輥形 對(duì)于轉(zhuǎn)轂式多斜輥矯直機(jī)來(lái)說(shuō),輥距P是矯直機(jī)的一個(gè)基本結(jié)構(gòu)參數(shù),它主要受結(jié)構(gòu)條件、強(qiáng)度條件和矯直可能性的約束,既影響矯直質(zhì)量,又決定著矯直機(jī)的尺寸。首先,須從矯直機(jī)的結(jié)構(gòu)尺寸進(jìn)行考慮,輥距P的選取要確保矯直輥在最小調(diào)角時(shí)輥與輥之間互不干涉;其次,須對(duì)機(jī)器受力進(jìn)行考慮,在矯直彎矩一定的情況下,輥距越大,矩直力越小,機(jī)器受力情況越好,矯直輥和機(jī)架的強(qiáng)度要求也就越易滿(mǎn)足。輥距P越小,矩直力越大,矯直輥受到的扭轉(zhuǎn)應(yīng)力和輥身接觸應(yīng)力增大,使得輥身表面過(guò)早磨損和削落,影響矯直輥壽命,同時(shí)也易于擦傷鋼筋表面;同時(shí),對(duì)矯直可能性進(jìn)行考慮,鋼筋直徑d值越小,為實(shí)現(xiàn)塑性變形,鋼筋在斜輥之間的彎曲半徑也應(yīng)越小。輥距越小,對(duì)鋼筋可能產(chǎn)生的反彎曲率越大,矯直質(zhì)量越高,因此,應(yīng)盡量選擇較小的輥距,綜合考慮,確定輥距的原則是:既要保證矯直質(zhì)量又要滿(mǎn)足矯直輥的強(qiáng)度要求。 輥距 P=(1.24.4) 由文獻(xiàn)4可知,在彈塑性變形區(qū)內(nèi),矯直輥應(yīng)繞基準(zhǔn)鋼筋旋轉(zhuǎn)2周以上。對(duì)于基準(zhǔn)鋼筋,矯直輥旋轉(zhuǎn)一圈前進(jìn)的導(dǎo)程為,于是彈塑性變形區(qū)長(zhǎng)度 應(yīng)滿(mǎn)足: (3-11) 由文獻(xiàn)5可知: (3-12)將式(4-11)代入式(4-12),得: (3-13)3.2.1.3 矯直輥傾斜角的設(shè)計(jì) 矯直輥的傾斜角不僅對(duì)于接觸條件及高頻彎曲次數(shù)有直接影響,也對(duì)于保證鋼筋各個(gè)斷面的變形在各矯直輥下不發(fā)生同步性的重復(fù)有決定性作用。因此,值的選取對(duì)鋼筋的矯直質(zhì)量有重要影響。 矯直輥傾角的選擇除考慮矯直速度外,還應(yīng)考慮矯直質(zhì)量和矯直穩(wěn)定性。在其它參數(shù)相同的情況下,當(dāng)增大時(shí),輥形變陡(見(jiàn)圖3-9),矯直速度增大,產(chǎn)量增加;轉(zhuǎn)轂旋轉(zhuǎn)一周,鋼筋前進(jìn)的導(dǎo)程也增大,這樣鋼筋在彈塑性彎曲矯直區(qū)中的彎曲矯直次數(shù)為(注: 為彈塑性變形區(qū)長(zhǎng)度)就減少,矯直質(zhì)量就不易保證,同時(shí),傾角越大,鋼筋與矯直輥接觸線(xiàn)越短,接觸應(yīng)力就越大,易出現(xiàn)矯直缺陷,但由于輥形變陡,矯直穩(wěn)定性會(huì)變好。反之,則情況相反。 由接觸區(qū)長(zhǎng)度準(zhǔn)則,傾斜角最大值可由下式得出 (3-14)式中d矯直鋼筋直徑(mm) 矯直輥工作部分長(zhǎng)度(mm)輥?zhàn)庸ぷ鞑糠珠L(zhǎng)度: (3-15)式中 輥腰半徑(mm); r鋼筋半徑(mm); 矯直輥傾斜角(。); 理論輥形中距輥腰 處矯直輥的包角(。)。將式(3-15)代入(3-14)中,得: (3-16)理論上= ,矯直輥對(duì)鋼筋的包容度為28%,滿(mǎn)足矯直條件。將數(shù)據(jù)代入上式,解得由文獻(xiàn)4給出, (3-17)在 之間, 用代替,最大誤差為可以近似地把 代入上式后,傾斜角的最小值可由式(3-18)求出 (3-18)得圖3-9 矯直輥輥形(r=5mm, =23mm) 另外從鋼筋與雙曲線(xiàn)輥形接觸后保持直線(xiàn)狀態(tài)來(lái)考慮,鋼筋直徑d越大,輥?zhàn)拥膬A斜角越大。同時(shí)考慮到在實(shí)際操作中,值越大,兩矯直輥在鋼筋軸線(xiàn)方向所形成的有效空間越大,進(jìn)料容易。又因?yàn)殇摻罾碚摮隹谒俣葀=0.6m/s ,鋼筋出口速度提高,在冷軋帶肋鋼筋矯直過(guò)程中,為避免劃傷,必須保證鋼筋肋頂面與矯直輥面接觸,而且接觸面積盡量大,由GB13788-92,冷軋帶肋鋼筋三面肋沿鋼筋橫截面周圈上均勻分布,其中有一面必須與另兩面反向,肋中心線(xiàn)和鋼筋縱軸線(xiàn)夾角為,則取值為和,取值范圍為 。但隨值增大,鋼筋與輥?zhàn)咏佑|區(qū)長(zhǎng)度減少,與輥?zhàn)右淮谓佑|的肋面數(shù)目減小,鋼筋接觸應(yīng)力增大,肋面易被壓傷。綜合考慮上述因素,取宜取偏大值。3.2.2矯直輥輥系的配置斜輥矯直主要依靠足夠的接觸區(qū)長(zhǎng)度及在接觸區(qū)內(nèi)一定的高頻彎曲次數(shù),而不單靠輥數(shù)的增加。增加輥數(shù)等于增加低頻彎曲次數(shù),加長(zhǎng)塑性區(qū),其對(duì)提高矯直速度更為重要。同時(shí)。,也增加了鋼筋的硬化和矯直功率,而且結(jié)構(gòu)更大。為此,在保證矯直質(zhì)量的前提下,輥數(shù)盡量少些。 輥數(shù)的多少直接取決于輥系的配置方式,輥系的配置方式對(duì)于矯直質(zhì)量、被矯直鋼筋的尺寸和形狀精度具有重要的影響。在本設(shè)計(jì)中,綜合1-1和2-2輥系配置的特性,采用了前四個(gè)斜輥1-1,后兩個(gè)斜輥2-2的復(fù)合配置方式。圖3-10 11輥系配置示意圖圖3-11 22輥系配置示意圖1-1輥系(見(jiàn)圖3-10)適用于一般棒材及厚管材的矯直,被矯直鋼筋受三次低頻彎曲,形成三個(gè)塑性彎曲區(qū),若在彈塑性變形區(qū)內(nèi),每個(gè)矯直輥繞鋼筋旋轉(zhuǎn)4次,則等于在彈塑性變形區(qū)內(nèi),矯直輥繞鋼筋總共旋轉(zhuǎn)12次,即增加了高頻彎曲次數(shù),得到較好的矯直效果,但是鋼筋頭尾在小于或等于半個(gè)輥距的長(zhǎng)度內(nèi)得不到矯直,有時(shí)會(huì)造成大量的切頭損失。 2-2輥系(見(jiàn)圖3-11)中,在矯直輥的對(duì)面加上壓緊輥,擴(kuò)大了鋼筋塑性變形區(qū),只要保證圓材壓緊區(qū),圓材的每層圓周上的纖維將受到一致的變形,即使圓材的原始彎曲較大,在受到相同的較大彎曲之后,各條纖維的塑性變形雖有不同,但彈復(fù)能力會(huì)基本一致,故能得到明顯的矯直效果。同時(shí)2-2輥系能消除圓材的甩尾和由此引起的噪音,有利于鋼筋兩端的矯直,且不易產(chǎn)生表面擦傷,能保護(hù)冷軋帶肋鋼筋的表面質(zhì)量。成對(duì)配置的輥系還可以對(duì)管材橢圓度有圓整作用;起到配置的作用,減小轉(zhuǎn)轂的偏心,減輕振動(dòng)。但隨著轉(zhuǎn)轂質(zhì)量增加,動(dòng)載荷增大,矯直功率也隨之增加。在相同功率條件下,矯直速度降低。 為了保證矯直速度(本設(shè)計(jì)中v=36m/min),減少轉(zhuǎn)轂的動(dòng)載荷,綜合前兩種輥系的優(yōu)點(diǎn),采用1-1-2(3/3)的輥系配置方式,尾部?jī)蓚€(gè)矯直輥同時(shí)起固端作用,實(shí)現(xiàn)了鋼筋的全長(zhǎng)矯直,能夠取得很好的矯直效果。1矯直輥 2矯直鋼筋 3轉(zhuǎn)轂圖3-12 112(3/3)輥系配置示意圖3.2.3 矯直速度 為鋼筋前進(jìn)的速度,即矯直速度,目前,關(guān)于矯直速度的理論與實(shí)驗(yàn)研究都不多,有的只是按統(tǒng)計(jì)經(jīng)驗(yàn)來(lái)確定矯直速度,在本文中把鋼筋看作直材,對(duì)于矯直過(guò)程中的打滑現(xiàn)象,用系數(shù)來(lái)表示。從而鋼筋的前進(jìn)速度為加入修正系數(shù)(取0.920.96),得圖3-13 鋼筋與矯直輥的運(yùn)動(dòng)關(guān)系324 對(duì)矯直質(zhì)量影響的幾個(gè)因素3241 壓下量對(duì)矯直質(zhì)量的影響 鋼筋的縱向彎曲是應(yīng)用彈塑性彎曲矯直原理實(shí)現(xiàn)矯直的。對(duì)于1-1-2(3/3)型轉(zhuǎn)轂式斜輥矯直機(jī)來(lái)說(shuō),由于二、三、四輥的偏移(壓下量);鋼筋呈彈塑性彎曲狀態(tài),經(jīng)過(guò)多次彈塑性反復(fù)彎曲而實(shí)現(xiàn)矯直(圖4-15)。關(guān)于壓下量的大小,各國(guó)給出的公式各不相同,且差別極大,如文獻(xiàn)15建議彈塑性變形高度應(yīng)達(dá)到80%,而文獻(xiàn)51則認(rèn)為彈塑性變形高度達(dá)到35%即可實(shí)現(xiàn)矯直目的,文獻(xiàn)52對(duì)矯直所需的軸反彎曲線(xiàn)曲率進(jìn)行了數(shù)值分析和計(jì)算,得到的結(jié)果與文獻(xiàn)51基本相符。實(shí)際上壓下量的大小應(yīng)視矯直機(jī)的輥距和被矯鋼筋的原始彎曲度、材質(zhì)、規(guī)格和輥?zhàn)幽p情況作相應(yīng)的調(diào)整。在其它參數(shù)相同的情況下,輥距越大,鋼筋原始彎曲度越大,材料屈服強(qiáng)度越大、直徑越小,輥?zhàn)幽p情況越嚴(yán)重,壓下量應(yīng)取的越大,反之,則情況相反。3242矯直速度對(duì)矯直質(zhì)量的影響 以前,人們對(duì)矯直速度對(duì)矯直質(zhì)量的影響不夠重視,實(shí)際上,矯直速度也是影響矯直質(zhì)量的一個(gè)關(guān)鍵因素。矯直速度的大小應(yīng)與被矯直鋼筋的原始彎曲度、規(guī)格及材質(zhì)相適應(yīng)。鋼筋的原始彎曲度大、直徑大、材料屈服強(qiáng)度高時(shí)應(yīng)采用較低的矯直速度進(jìn)行矯直,反之,則情況相反。在其它參數(shù)相同的情況下,采用高速矯直,矯直質(zhì)量不好,而采用低速矯直時(shí)就可獲得較好的矯直效果,這主要與材料的性能有關(guān),應(yīng)使矯直速度低于材料的變形速率,確保材料發(fā)生彈塑性變形,因此,在保證產(chǎn)量的前提下最好采用低速矯直。325 矯直系統(tǒng)設(shè)計(jì)計(jì)算在我所設(shè)計(jì)的冷軋帶肋鋼筋矯直切割機(jī)設(shè)計(jì)過(guò)程中所取參數(shù)如下:采用1-1-1(3/3)的輥系配置方式,基準(zhǔn)鋼筋直徑 ,輥腰直徑=(12.525)mm,取=20m,輥?zhàn)尤L(zhǎng) =(50100)mm,取 =90mm,矯直輥傾角,輥距取P=280mm。實(shí)踐證明,矯直效果良好。33轉(zhuǎn)轂式斜輥矯直力能參數(shù)計(jì)算一般來(lái)說(shuō),如圖3-14所示在矯直輥上,除作用有垂直壓力F(更確切的說(shuō),是垂直于通過(guò)矯直輥軸線(xiàn),并平行于鋼筋軸線(xiàn)的平面力)外,還作用有力圖使矯直輥在 角平面轉(zhuǎn)動(dòng)的力偶M,切向力T和軸向力S,角 為鋼筋與矯直輥的最大接觸角。當(dāng)把矯直輥受到的壓力視為總壓力的垂直分力時(shí),所做的計(jì)算已達(dá)到工程計(jì)算所允許的精度,即其它分力的影響可以考慮不計(jì)。 圖3-14 矯直輥受力示意圖 矯直力是原始曲率和鋼筋直徑等參數(shù)的函數(shù),轉(zhuǎn)瞽式斜輥矯直機(jī)由于輥系配置方式不同,受力狀態(tài)和鋼筋變形狀態(tài)都不盡相同,也就有不同的矯直力表達(dá)式。因此在力學(xué)計(jì)算時(shí),必須結(jié)合各個(gè)輥系的特點(diǎn)來(lái)進(jìn)行,做到具體問(wèn)題具體分析。對(duì)于1-1輥系(圖3-15),將矯直力作為集中力考慮,力的作用點(diǎn)分別為各個(gè)矯直輥輥腰部分,由三彎矩方程求出各輥的矯直力圖3-15 11輥系受力模型在本設(shè)計(jì)中,由于采用了1-1-2(3/3)的輥系配置方式,考慮到第5,6輥起固端和導(dǎo)向作用,在第五輥力作用點(diǎn)處發(fā)生彈塑性彎曲,鋼筋在輥系中產(chǎn)生4次彎曲。矯直輥受力點(diǎn)之間稱(chēng)為接觸區(qū),在接觸區(qū)內(nèi)鋼筋的彎曲曲率認(rèn)為是相等的,但實(shí)際中接觸區(qū)中間的曲率要比兩端的大,因此兩端的壓力不可能集中作用于一點(diǎn),而可能是由外向內(nèi)迅速遞減的壓力,因此一種簡(jiǎn)化的考慮,按圖3-16的受力模型進(jìn)行簡(jiǎn)化,矯直輥受力為集中力。圖3-16 112(3/3)輥系受力模型 對(duì)于直徑為d的冷軋帶肋鋼筋,矯直輥的平均直徑為 ,輥身長(zhǎng)度為l,接觸區(qū)長(zhǎng)度為j。一般情況下,l與j的近似關(guān)系為: (3-20) 第一個(gè)矯直輥所受力由三彎矩方程可求得 對(duì)于轉(zhuǎn)轂式斜輥轎直機(jī)壓下量既不需過(guò)大,也不需有嚴(yán)格的遞減規(guī)律,因此 的取值不必保持差別。即 同理,對(duì)于第三個(gè)矯直輥而對(duì)于底四、五、六矯直輥的受力得1-1-2(3/3)配置的輥系,其合力為34轉(zhuǎn)轂式斜輥矯直機(jī)矯直功率計(jì)算轉(zhuǎn)轂式斜輥矯直機(jī)矯直功率可分為克服塑性變形所需功率與克服摩擦所需功率兩部分組成??朔苄宰冃嗡韫β拾▋刹糠郑轰摻畹皖l彎曲塑性變形所需功率、旋轉(zhuǎn)彎曲的塑性變形功率;克服摩擦所需功率包括兩部分:矯直輥摩擦功率、轉(zhuǎn)轂軸承摩擦功率 。下面分別加以說(shuō)明計(jì)算。 341鋼筋低頻彎曲塑性變形所需功率 由于矯直輥的交錯(cuò)布置及矯直輥均有一定的壓下量使得鋼筋在前進(jìn)過(guò)程中要受多次的反彎。矯直輥的數(shù)量I越多,反彎次數(shù)越多,這個(gè)彎曲次數(shù)屬于低頻彎曲次數(shù)。同時(shí)矯直輥隨轉(zhuǎn)轂旋轉(zhuǎn)而轉(zhuǎn)動(dòng),鋼筋的彎曲變成全圓周性的旋轉(zhuǎn)彎曲,它屬于高頻彎曲。鋼筋低頻彎曲塑性變形所需功率Ns為 (3-22)式中 -矯直鋼筋的前進(jìn)速度