歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類(lèi) > DOC文檔下載  

一致連續(xù)函數(shù)的判定數(shù)學(xué)畢業(yè)論文

  • 資源ID:37745887       資源大?。?span id="bjb2mhu" class="font-tahoma">736.03KB        全文頁(yè)數(shù):10頁(yè)
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶(hù)名和密碼都是您填寫(xiě)的郵箱或者手機(jī)號(hào),方便查詢(xún)和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

一致連續(xù)函數(shù)的判定數(shù)學(xué)畢業(yè)論文

一致連續(xù)函數(shù)的判定摘要:函數(shù)在區(qū)間I上的一致連續(xù)性與連續(xù)是兩個(gè)不同的概念,后者是一個(gè)局部性概念,前者具有整體性質(zhì),它刻畫(huà)了函數(shù)f(x)在區(qū)間I上變化的相對(duì)均勻性.給出了幾個(gè)判別函數(shù)一致連續(xù)性的方法,本文是通過(guò)連續(xù)函數(shù)的性質(zhì)尋求一致連續(xù)函數(shù)的判定十五種判別方法.關(guān)鍵詞:函數(shù);連續(xù) ;一致連續(xù) ;收斂引言: 函數(shù)的一致連續(xù)是數(shù)學(xué)分析中的一個(gè)重要概念.連續(xù)是考察函數(shù)在一個(gè)點(diǎn)的性質(zhì)而一致連續(xù)是考察函數(shù)在一個(gè)區(qū)間的性質(zhì).以一致連續(xù)比連續(xù)的條件要嚴(yán)格,在區(qū)間上一致連續(xù)的函數(shù)則一定連續(xù),但連續(xù)的函數(shù)不一定一致連續(xù)。因此我去總結(jié)了通過(guò)函數(shù)的連續(xù)性尋找一些函數(shù)一致連續(xù)的判別法.一、基本概念與定理定義(一致連續(xù)):設(shè)函數(shù)在區(qū)間上有定義,若,當(dāng)時(shí),有,則稱(chēng)函數(shù)在上一致連續(xù)。注:設(shè)函數(shù)在區(qū)間上有定義,若,當(dāng)時(shí),有,則稱(chēng)函數(shù)在區(qū)間上不一致連續(xù)。(定理):若函數(shù)在區(qū)間連續(xù),則在區(qū)間上一致連續(xù)。二、有限區(qū)間上一致連續(xù)函數(shù)的判定定理1: 函數(shù)在上一致連續(xù)的充要條件是函數(shù)在上連續(xù)。定理2: 函數(shù)在上一致連續(xù)的充要條件是函數(shù)在上連續(xù)且,都存在。證明: 必要性,因?yàn)楹瘮?shù)在上一致連續(xù),即:對(duì)對(duì),且,有,顯然函數(shù)在上連續(xù),且對(duì)對(duì),當(dāng)時(shí),當(dāng)然,有。根據(jù)柯西收斂準(zhǔn)則,存在。同理可證,存在。充分性, 因?yàn)?,都存在,分別設(shè)為和,構(gòu)造函數(shù): 顯然在上連續(xù),由定理1可知:在上一致連續(xù),從而在上一致連續(xù)。推論1:函數(shù)在()上一致連續(xù)的充要條件是函數(shù)在()上連續(xù),且()存在。推論2: 若函數(shù)在有限區(qū)間上連續(xù),單調(diào),有界,則函數(shù)在上一致連續(xù)。定理3: 設(shè)在區(qū)間(是有限區(qū)間或無(wú)窮區(qū)間)連續(xù),則在內(nèi)閉一致連續(xù)。即,在上一致連續(xù)。結(jié)論的正確性有定理直接可得。用此條件能解決很多關(guān)于函數(shù)性質(zhì)的證明題。其解題思路是把開(kāi)區(qū)間上的問(wèn)題轉(zhuǎn)化到閉區(qū)間上,從而利用定理。定理4: 若函數(shù)在及都一致連續(xù),則在上一致連續(xù)。注:改為時(shí),結(jié)論也成立。證明:已知函數(shù)在與一致連續(xù),即:, 且 ,有;, 且,有。于是,有:,且,當(dāng):1)且,有; 2)且,有; 3), 且,(,)有即函數(shù)在上一致連續(xù)。定理5: 函數(shù)在上一致連續(xù)的充要條件是任給中收斂數(shù)列,函數(shù)列也收斂。證明: 必要性,由于函數(shù)在上一致連續(xù),故對(duì)于當(dāng),且時(shí),有設(shè)是中任一收斂數(shù)列,由柯西條件對(duì)上述的時(shí),當(dāng)時(shí),有,故。所以,函數(shù)列也收斂。 充分性,假設(shè)在上不一致連續(xù),即,對(duì)(?。?,且,而 (1)且有界,故存在收斂子列。由 (),故中相應(yīng)的子列也收斂,且與極限相同,因此數(shù)列也收斂于相同極限,于是數(shù)列也收斂。故當(dāng)足夠大時(shí),與(1)矛盾,假設(shè)不成立。即函數(shù)在上一致連續(xù)。定理6: 函數(shù)在上一致連續(xù)的充要條件是任給,時(shí), (1)證明:“必要性”,設(shè)函數(shù)在上一致連續(xù),則,當(dāng)且時(shí),。所以 (2)當(dāng),時(shí),(2)式成立,故(1)式成立。“充分性”,設(shè),當(dāng)時(shí),則, ,使得當(dāng)時(shí) 有。所以函數(shù)在上一致連續(xù)。注:此命題提供了一個(gè)直觀觀察一致連續(xù)的辦法:在圖象上最陡的地方,若,則,一致連續(xù);若在某處無(wú)限變陡,則非一致連續(xù)。三、無(wú)限區(qū)間上一致連續(xù)函數(shù)的判定定理1: 若函數(shù)在()上連續(xù)且, (,)都存在,則函數(shù)在()上一致連續(xù)。證明:已知存在,根據(jù)柯西收斂準(zhǔn)則,有,有;又已知函數(shù)在閉區(qū)間連續(xù),則函數(shù)在上一致連續(xù),即對(duì)上述的,(使),且,有于是,且(使),有即函數(shù)在上一致連續(xù)。推論1: 若函數(shù)在()上連續(xù),且()存在,則函數(shù)在()上一致連續(xù)。推論2: 若函數(shù)在上連續(xù)且,都存在,則函數(shù)在上一致連續(xù)。定理2: 定義在上的連續(xù)函數(shù),若當(dāng)時(shí),有水平漸近線,則在上一致連續(xù).證明:由于有水平漸近線知:存在,根據(jù)柯西收斂準(zhǔn)則:,當(dāng)時(shí),有 (1)因在上連續(xù),所以在上連續(xù),從而在上一致連續(xù),對(duì)如上的,當(dāng)且時(shí),有 (2)現(xiàn),只要,若.則由(1)知若,則由(2)知若分別屬于與,則,故 綜上所述,在上一致連續(xù)。注: 此定理的結(jié)論可推廣到無(wú)窮區(qū)間或上.定理3: 定義在上的線性函數(shù) 必在內(nèi)一致連續(xù).證明:,要使,只要,取,當(dāng)時(shí),有 故 在內(nèi)一致連續(xù)。定理4: 設(shè)在上連續(xù),若當(dāng)時(shí),以直線為斜漸近線,則在上一致連續(xù)。證明: 設(shè),則由已知可得:在上連續(xù)。因以直線為斜漸近線,所以 即由定理2可知: 在上一致連續(xù).又由定理3知:在上一致連續(xù).故在上一致連續(xù).注:此定理的結(jié)論也可推廣到無(wú)窮區(qū)間或上。推論:若函數(shù)在上連續(xù)且曲線:存在不垂直于軸的漸近線,則函數(shù)在上一致連續(xù).定理5: 若函數(shù)在區(qū)間(可開(kāi),可半開(kāi),可有限或無(wú)限)可導(dǎo),且在有界,則函數(shù)在上一致連續(xù).證明:設(shè), (),當(dāng)時(shí),根據(jù)微分中值定理,存在點(diǎn)介于與之間,使得: 即在上一致連續(xù)。定理6:若函數(shù)與在區(qū)間可導(dǎo),且,則:當(dāng)在上一致連續(xù)時(shí),在上一致連續(xù).證明:已知在一致連續(xù),即,當(dāng)時(shí),有: 根據(jù)柯西中值定理,存在介于與之間,使得: 所以 即 在上也一致連續(xù)。定理7:設(shè)函數(shù)為區(qū)間上連續(xù)的周期函數(shù),則在上一致連續(xù).證明: 設(shè)為的周期,則在區(qū)間上一致連續(xù),即:對(duì),只要,就有: 現(xiàn)取,滿(mǎn)足,則必存在整數(shù),使得: ,且故,于是故 即在上一致連續(xù).定理8: 設(shè),均在上連續(xù),存在,且,則在上一致連續(xù)。證明: 對(duì)于,因?yàn)椋杂珊瘮?shù)極限定義可知: ,當(dāng)時(shí),有又因?yàn)榇嬖冢O(shè),所以由函數(shù)極限定義可知:,當(dāng)時(shí),有。所以取,當(dāng)時(shí),有 且 取,因?yàn)樵谏线B續(xù),所以在上一致連續(xù)。 在上,(使),對(duì)于,只要,就有:所以在上一致連續(xù)。故在上一致連續(xù)。定理9:設(shè)在上連續(xù),在上一致連續(xù),且,則在上一致連續(xù)。證明:對(duì)于任意的,因?yàn)?,所以,?dāng)時(shí),就有。又因?yàn)樵谏线B續(xù),所以在上連續(xù),故在上一致連續(xù).又因?yàn)樵谏弦恢逻B續(xù),所以在上一致連續(xù)。故(使),對(duì)于,只要,就有所以對(duì)于,只要,就有 所以在上一致連續(xù)所以在上一致連續(xù)。參考文獻(xiàn)1呂通慶 編著. 一致連續(xù)與一致收斂. 北京:人民教育出版社,19812復(fù)旦大學(xué)數(shù)學(xué)系 編著. 數(shù)學(xué)分析. 上海:復(fù)旦大學(xué)出版社,2002.3裴禮文 編著. 數(shù)學(xué)分析中的典型問(wèn)題與方法 . 北京: 高等教育出版社,2006.4毛羽輝 編著. 數(shù)學(xué)分析選論. 北京:科學(xué)出版社,2003.5冉凱.關(guān)于函數(shù)一致連續(xù)性證明的幾個(gè)方法.西安聯(lián)合大學(xué)學(xué)報(bào),2002.6劉玉璉 編著. 數(shù)學(xué)分析講義練習(xí)題選解. 北京: 高等教育出版社,1996.7李惜雯 編著. 數(shù)學(xué)分析(一元函數(shù)部分)要點(diǎn)與解題.西安:西安交通大學(xué)出版社,2006.Determination of the same continuous function Inner Mongolia Normal University mathematics scientific institute 07 level of Mongolian classesInstructs teacher siqinAbstract: This article has given several criterion function uniform continuity method. The function uniform continuity is in a mathematical analysis important concept, is the recognition difficulty. The function in the sector uniform continuity with is two entirely different concepts continuously, the latter is a topicality concept, the former has the bulk properties, it has portrayed the function the relative homogeneity which changes in the sector. This article seeks the uniformly continuous function through continuous functions nature the decision methodKey words: Continuously, identically continuously, restraining 10

注意事項(xiàng)

本文(一致連續(xù)函數(shù)的判定數(shù)學(xué)畢業(yè)論文)為本站會(huì)員(1888****888)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!