中國科學技術大學概率論與數(shù)理統(tǒng)計.ppt
-
資源ID:4240191
資源大?。?span id="w88koi4" class="font-tahoma">428KB
全文頁數(shù):28頁
- 資源格式: PPT
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
中國科學技術大學概率論與數(shù)理統(tǒng)計.ppt
5 1大數(shù)定律 5 2中心極限定理 5 3小結 第五章大數(shù)定律與中心極限定理 5 1大數(shù)定律 討論 概率是頻率的穩(wěn)定值 的確切含義 給出幾種大數(shù)定律 伯努利大數(shù)定律 切比雪夫大數(shù)定律 馬爾可夫大數(shù)定律 辛欽大數(shù)定律 常用的幾個大數(shù)定律 大數(shù)定律一般形式 若隨機變量序列 Xn 滿足 則稱 Xn 服從大數(shù)定律 切比雪夫大數(shù)定律 定理5 1 1 Xn 兩兩不相關 且Xn方差存在 有共同的上界 則 Xn 服從大數(shù)定律 證明用到切比雪夫不等式 依概率收斂 定義5 1 1 依概率收斂 大數(shù)定律討論的就是依概率收斂 若對任意的 0 有 則稱隨機變量序列 Yn 依概率收斂于Y 記為 依概率收斂的性質 定理5 1 2若 則 Xn 與 Yn 的加 減 乘 除依概率收斂到a與b的加 減 乘 除 依概率收斂 續(xù) 推論5 1 3 多變量函數(shù) 設 g x y 在點 a b 連續(xù) 則 又設函數(shù) 伯努利大數(shù)定律 定理5 1 4 伯努利大數(shù)定律 設 n是n重伯努利試驗中事件A出現(xiàn)的次數(shù) 每次試驗中P A p 則對任意的 0 有 馬爾可夫大數(shù)定律 定理5 1 5 若隨機變量序列 Xn 滿足 則 Xn 服從大數(shù)定律 馬爾可夫條件 辛欽大數(shù)定律 定理5 1 6 若隨機變量序列 Xn 獨立同分布 且Xn的數(shù)學期望存在 則 Xn 服從大數(shù)定律 1 伯努利大數(shù)定律是切比雪夫大數(shù)定律的特例 注意點 2 切比雪夫大數(shù)定律是馬爾可夫大數(shù)定律的特例 3 伯努利大數(shù)定律是辛欽大數(shù)定律的特例 5 2中心極限定理 討論獨立隨機變量和的極限分布 本節(jié)指出極限分布為正態(tài)分布 5 2 1獨立隨機變量和 設 Xn 為獨立隨機變量序列 記其和為 5 2 2獨立同分布的中心極限定理 定理5 2 1林德貝格 勒維中心極限定理 設 Xn 為獨立同分布隨機變量序列 數(shù)學期望為 方差為 2 0 則當n充分大時 有 應用之例 正態(tài)隨機數(shù)的產(chǎn)生 誤差分析 林德貝格 勒維中心極限定理的推論 例5 2 1每袋味精的凈重為隨機變量 平均重量為100克 標準差為10克 一箱內裝200袋味精 求一箱味精的凈重大于20500克的概率 解 設箱中第i袋味精的凈重為Xi 則Xi獨立同分布 且E Xi 100 Var Xi 100 由中心極限定理得 所求概率為 0 0002 故一箱味精的凈重大于20500克的概率為0 0002 很小 例5 2 2設X為一次射擊中命中的環(huán)數(shù) 其分布列為 求100次射擊中命中環(huán)數(shù)在900環(huán)到930環(huán)之間的概率 解 設Xi為第i次射擊命中的環(huán)數(shù) 則Xi獨立同分布 且E Xi 9 62 Var Xi 0 82 故 0 00021 5 2 3二項分布的正態(tài)近似 定理5 2 2棣莫弗 拉普拉斯中心極限定理 設 n為服從二項分布b n p 的隨機變量 則當n充分大時 有 是林德貝格 勒維中心極限定理的特例 二項分布是離散分布 而正態(tài)分布是連續(xù)分布 所以用正態(tài)分布作為二項分布的近似時 可作如下修正 注意點 1 中心極限定理的應用有三大類 注意點 2 ii 已知n和概率 求x iii 已知x和概率 求n i 已知n和x 求概率 一 給定n和x 求概率 例5 2 3100個獨立工作 工作的概率為0 9 的部件組成一個系統(tǒng) 求系統(tǒng)中至少有85個部件工作的概率 解 用 由此得 Xi 1表示第i個部件正常工作 反之記為Xi 0 又記Y X1 X2 X100 則E Y 90 Var Y 9 二 給定n和概率 求x 例5 2 4有200臺獨立工作 工作的概率為0 7 的機床 每臺機床工作時需15kw電力 問共需多少電力 才可有95 的可能性保證正常生產(chǎn) 解 用 設供電量為x 則從 Xi 1表示第i臺機床正常工作 反之記為Xi 0 又記X X1 X2 X200 則E X 140 Var X 42 中解得 三 給定x和概率 求n 例5 2 5用調查對象中的收看比例k n作為某電視節(jié)目的收視率p的估計 要有90 的把握 使k n與p的差異不大于0 05 問至少要調查多少對象 解 用 根據(jù)題意 Xn表示n個調查對象中收看此節(jié)目的人數(shù) 則 從中解得 Xn服從b n p 分布 k為Xn的實際取值 又由 可解得 n 271 例5 2 6設每顆炮彈命中目標的概率為0 01 求500發(fā)炮彈中命中5發(fā)的概率 解 設X表示命中的炮彈數(shù) 則 X b 500 0 01 0 17635 2 應用正態(tài)逼近 P X 5 P 4 5 X 5 5 0 1742 5 2 4獨立不同分布下的中心極限定理 定理5 2 3林德貝格中心極限定理 設 Xn 為獨立隨機變量序列 若任對 0 有 林德貝格條件 則 李雅普諾夫中心極限定理 定理5 2 4李雅普諾夫中心極限定理 設 Xn 為獨立隨機變量序列 若存在 0 滿足 李雅普諾夫條件 則 林德貝格條件較難驗證 例5 2 7設X1 X2 X99相互獨立 且服從不同的0 1分布 試求 解 設X100 X101 相互獨立 且與X99同分布 則可以驗證 Xn 滿足 1的李雅普諾夫條件 且 由此得 5 3小結 基本概念 依概率收斂 契比雪夫大數(shù)定理 伯努利大數(shù)定理 辛欽大數(shù)定理 獨立同分布的中心極限定理 李雅普諾夫中心極限定理 棣莫弗 拉普拉斯中心極限定理 基本概念 中心極限定理的應用 2 5 8 作業(yè)