小車(chē)自動(dòng)避障及路徑規(guī)劃(共23頁(yè))
精選優(yōu)質(zhì)文檔-傾情為你奉上第3章 系統(tǒng)總體結(jié)構(gòu)及工作原理該系統(tǒng)主要以超聲波測(cè)距為基本測(cè)距原理,并在相應(yīng)的硬件和軟件的支持下,達(dá)到機(jī)器人避障的效果。3.1機(jī)器人總體硬件設(shè)計(jì)3.1.1傳感器的分布要求為了全方位檢測(cè)障物的分布狀況,并及時(shí)為機(jī)器人系統(tǒng)提供全面的數(shù)據(jù),可將所需的八個(gè)傳感器均勻排列在機(jī)器人周?chē)?,相鄰每?duì)傳感器互成45度角。為了避免相互干擾,八個(gè)傳感器以程序運(yùn)行周期為周期,進(jìn)行循環(huán)測(cè)距。傳感器排列示意圖如下:d0d1d2d3d4d5d6d7圖3.1.1 傳感器分布圖3.1.2避障系統(tǒng)總體電路框架圖設(shè)計(jì)紅外傳感器A/D轉(zhuǎn)換單 片 機(jī)左側(cè)電機(jī)超聲波信號(hào)右側(cè)電機(jī)LED顯示LED顯示圖3.1.2 硬件設(shè)計(jì)總體框架圖上圖為支持機(jī)器人運(yùn)行實(shí)用程序的硬件部分的總體設(shè)計(jì)框架圖,由負(fù)責(zé)相關(guān)任務(wù)的同學(xué)提供。在超聲波信號(hào)輸入單片機(jī)以后,由存儲(chǔ)在單片機(jī)中的主程序調(diào)用避障子程序,根據(jù)輸入信號(hào)執(zhí)行避障指令,并使相關(guān)數(shù)據(jù)返回主程序,轉(zhuǎn)而提供給電機(jī)和LED顯示器的驅(qū)動(dòng)程序使用,最后,由電機(jī)執(zhí)行轉(zhuǎn)向指令,結(jié)果則顯示在LED顯示器上。3.1.3避障系統(tǒng)總體軟件框架圖設(shè)計(jì)開(kāi)始初始化,開(kāi)中斷有按鍵?鍵盤(pán)處理按下鍵值X?運(yùn)行紅外避障運(yùn)行超聲波避障電機(jī)處理程序電機(jī)處理程序輸出顯示結(jié)束返回運(yùn)行顯示處理圖3.1.3 軟件總體框架圖由上圖可知,本文作者負(fù)責(zé)的超聲波避障程序?yàn)檐浖傮w設(shè)計(jì)中的子程序部分。在主程序運(yùn)行過(guò)程中,若調(diào)用超聲波避障程序,機(jī)器人在自行軌跡規(guī)劃后,將程序處理所得數(shù)據(jù)送給電機(jī)處理成立程序,控制電機(jī)動(dòng)作。具體的避障程序設(shè)計(jì)將在第4章進(jìn)行。3.2超聲波測(cè)距原理測(cè)距原理:超聲波是指頻率高于20KHz的機(jī)械波。為了以超聲波作為檢測(cè)手段,必須產(chǎn)生超生波和接收超聲波。完成這種功能的裝置就是超聲波傳感器,習(xí)慣上稱(chēng)為超聲波換能器或超聲波探頭。超聲波傳感器有發(fā)送器和接收器,但一個(gè)超聲波傳感器也可具有發(fā)送和接收聲波的雙重作用。超聲波傳感器是利用壓電效應(yīng)的原理將電能和超聲波相互轉(zhuǎn)化即在發(fā)射超聲波的時(shí)候,將電能轉(zhuǎn)換,發(fā)射超聲波;而在收到回波的時(shí)候,則將超聲振動(dòng)轉(zhuǎn)換成電信號(hào)。8超聲波測(cè)距的原理一般采用渡越時(shí)間法TOF(time of flight)。首先測(cè)出超聲波從發(fā)射到遇到障礙物返回所經(jīng)歷的時(shí)間,再乘以超聲波的速度就得到二倍的聲源與障礙物之間的距離,即:8D=ct/2 其中D為傳感器與障礙物之間的距離,以m計(jì),c為超聲波速度,這里以340m/s計(jì),t為超聲波從發(fā)送到接收的總時(shí)間,以s計(jì)。據(jù)此原理可以用超聲波傳感器測(cè)得的距離為避障程序提供所需的數(shù)據(jù)。8第4章 軌跡規(guī)劃算法的實(shí)現(xiàn)方案4.1軌跡規(guī)劃算法的層次化設(shè)計(jì) 根據(jù)上述材料分析,可以將機(jī)器人軌跡規(guī)劃算法設(shè)計(jì)分為基礎(chǔ)控制層、行為控制層和坐標(biāo)計(jì)算層,三個(gè)層次進(jìn)行。4.1.1基礎(chǔ)控制層設(shè)計(jì)基礎(chǔ)控制層可定義為基本行為層,這層算法的任務(wù)是尋找目標(biāo)點(diǎn),并確保機(jī)器人可以順利到達(dá)指定目標(biāo)位。在確定目的地位置的情況下,為了達(dá)到上述目的,計(jì)算機(jī)必須對(duì)機(jī)器人的方位進(jìn)行時(shí)實(shí)計(jì)算。應(yīng)用人工勢(shì)場(chǎng)法原理,可以將目標(biāo)點(diǎn)設(shè)為引力極,牽引機(jī)器人運(yùn)動(dòng)。對(duì)此動(dòng)作建立相應(yīng)的模型,可以使用建立平面坐標(biāo)作為虛擬勢(shì)場(chǎng)的方法來(lái)給機(jī)器人定義方位,將機(jī)器人關(guān)于目標(biāo)點(diǎn)的時(shí)實(shí)偏角作為虛擬引力方向,以確定機(jī)器人下一步所需轉(zhuǎn)過(guò)的角度,并時(shí)實(shí)檢測(cè),是否已到達(dá)目的地,若已到達(dá),則可認(rèn)為虛擬引力此刻為0,并發(fā)出信號(hào)控制程序終止運(yùn)行總體程序。由此,可確定基礎(chǔ)控制層所需的各參數(shù):(1) 機(jī)器人的時(shí)實(shí)坐標(biāo)x, y值,由專(zhuān)門(mén)的坐標(biāo)計(jì)算層提供,為了提高精確度,可以采用厘米為單位制。(2) 機(jī)器人的速度v,測(cè)量后設(shè)為定值使用。(3) 周期T,直接設(shè)置為定值使用。(4) 偏轉(zhuǎn)角de,可通過(guò)機(jī)器人與橫坐標(biāo)之間的夾角pe,減去機(jī)器人到目標(biāo)點(diǎn)連線(xiàn)與橫坐標(biāo)的夾角E得到。(5) 終止信號(hào)last值先置為0,當(dāng)?shù)竭_(dá)目的地時(shí),將其置為1。基礎(chǔ)控制層程序流程圖如下:數(shù)據(jù)讀入1計(jì)算偏轉(zhuǎn)角de判斷是否到達(dá)目標(biāo)將last值置1數(shù)據(jù)輸出2YN圖4.1.1 基本控制層程序流程圖4.1.2行為控制層行為控制層是比基本控制層更復(fù)雜,更具有決定權(quán)的層次。它的存在決定了機(jī)器人智能避障行為的可行性,是相當(dāng)重要的算法層。其主要任務(wù)是讓機(jī)器人根據(jù)超聲波傳感器采集的距離信息判斷是否該進(jìn)行避障行為,且給出避障的轉(zhuǎn)角值,及轉(zhuǎn)向。這些都以左右綜合距離的大小決定,當(dāng)左邊綜合距離大于友邊綜合距離時(shí),可認(rèn)為左邊的斥力值大與右邊斥力值,機(jī)器人左轉(zhuǎn),反之,右轉(zhuǎn)。當(dāng)前方綜合距離小于設(shè)定的最小允許接近距離,而左右綜合距離又相等時(shí),則需要設(shè)置專(zhuān)門(mén)的轉(zhuǎn)角,對(duì)機(jī)器人施行強(qiáng)制性轉(zhuǎn)角動(dòng)作。據(jù)此,可將各控制變量之間的關(guān)系以數(shù)學(xué)公式的形式列出,并做為“人工勢(shì)場(chǎng)法”的基本數(shù)學(xué)模型被運(yùn)用于程序流程圖設(shè)計(jì)。設(shè)聲納Si的輸出為di,轉(zhuǎn)角de和速度v表示控制層行為的輸出,其中de表示機(jī)器人下一步的運(yùn)動(dòng)方向,v表示機(jī)器人下一步運(yùn)動(dòng)的速度。那么,基于勢(shì)場(chǎng)的控制行為可以表示如下 。de = me L<MminR<Mmin de = de0 R>=L de = -de0 L>R上式中的L表示機(jī)器人左邊障礙物的迫近程度,根據(jù)圖3.1.1 :L 為第1號(hào)到第3號(hào)傳感器返回距離值的倒數(shù)和;R表示機(jī)器人右邊障礙物的迫近程度,根據(jù)圖3.1.1 :R 為第5號(hào)到第7號(hào)傳感器返回距離值的倒數(shù)和。Mmin為障礙物的最小迫近程度值,相當(dāng)于第L組(或第R組)超聲波傳感器最大探索范圍的倒數(shù)和。當(dāng)左右迫近程度的值都小于最小迫近程度值時(shí),可簡(jiǎn)單認(rèn)為機(jī)器人周?chē)鸁o(wú)障礙物,機(jī)器人按基礎(chǔ)控制層執(zhí)行程序,其中的me表示機(jī)器人要到達(dá)目的地需要轉(zhuǎn)過(guò)的角度。de0表示機(jī)器人執(zhí)行行為控制層程序時(shí),所需轉(zhuǎn)動(dòng)的角度大小,一般可設(shè)為定值。以上述方案為基礎(chǔ),為了提高機(jī)器人的避障能力,還可對(duì)設(shè)置機(jī)器人的前方迫近程度值,因?yàn)闄C(jī)器人的反轉(zhuǎn)是以轉(zhuǎn)角180度來(lái)實(shí)現(xiàn)的,而非后退,所以,后方迫近程度值暫時(shí)無(wú)需設(shè)置。de = de0 F>MmaxF表示機(jī)器人前方距離值障礙物的迫近程度,根據(jù)圖3.1.1:F 為第4號(hào)傳感器返回距離值的倒數(shù),Mmax就是用于判斷障礙物是否已經(jīng)離機(jī)器人很近,假設(shè)機(jī)器人的最大速度為v,每?jī)刹街g的時(shí)間間隔為t,那么,為了確保機(jī)器人不會(huì)與障礙物碰撞,Mmax可以表示為速度v和間隔時(shí)間t乘積的倒數(shù)。當(dāng)F值大于Mmax值時(shí),表示前方距離障礙物很近了,需要進(jìn)行避障處理了。行為控制層程序流程圖如下:數(shù)據(jù)讀入0F是否大于MmaxR是否大于等于L左轉(zhuǎn)角度deL和R是否都小于Mmin數(shù)據(jù)出口1右轉(zhuǎn)角度deR是否大于等于L左轉(zhuǎn)角度de右轉(zhuǎn)角度de數(shù)據(jù)輸出2YNYNYNYN圖4.1.2 行為控制層程序流程圖4.1.3坐標(biāo)計(jì)算層設(shè)計(jì)坐標(biāo)計(jì)算層的設(shè)計(jì)方案,主要可采用虛擬坐標(biāo)技術(shù),它能形象地定義機(jī)器人相對(duì)障礙物及目標(biāo)點(diǎn)的具體位置,確保機(jī)器人及時(shí)避障,并順利到達(dá)目標(biāo)點(diǎn)。在機(jī)器人初始坐標(biāo)明確的條件下,機(jī)器人坐標(biāo)可根據(jù)上述兩層程序提供的數(shù)據(jù)算得。設(shè)程序循環(huán)間隔的周期為T(mén),那么,在間隔周期T時(shí)間內(nèi),機(jī)器人行走的距離P為速度v與T的乘積。又設(shè)機(jī)器人正方向與平面坐標(biāo)橫軸正方向的夾角為pe ,其初始值確定,轉(zhuǎn)動(dòng)值為上述兩層提供的角度de ,那么本周期的pe值為上個(gè)周期的pe值與轉(zhuǎn)角de的差。由此,可分別計(jì)算機(jī)器人本周期內(nèi)橫、縱坐標(biāo)的變化值 X , Y。X = P * cos ( pe )Y = P * sin ( pe )因此,本周期的橫、縱坐標(biāo) x , y 值可由上個(gè)周期的坐標(biāo)減去變化值得到。而本周期的坐標(biāo)值在行為控制層允許的情況下,將被代入基本行為層,檢測(cè)是否到達(dá)目的地。坐標(biāo)計(jì)算層程序流程圖如下:數(shù)據(jù)讀入2計(jì)算P計(jì)算pe計(jì)算本周期內(nèi)橫、縱坐標(biāo)變化值X , Y計(jì)算本周期內(nèi)橫、縱坐標(biāo)的值x , y數(shù)據(jù)輸出0圖4.1.3 坐標(biāo)計(jì)算層程序流程圖上述三層算法,相互制約,相互聯(lián)系,組成了整個(gè)系統(tǒng)的基本算法。每次循環(huán)執(zhí)行程序時(shí),都是由行為控制層入口,通過(guò)對(duì)迫近程度值大小的判斷,選擇是否中斷行為控制層,轉(zhuǎn)而執(zhí)行基礎(chǔ)控制層。最后執(zhí)行坐標(biāo)計(jì)算層,并把所得數(shù)據(jù)提供傳給程序循環(huán)的下一周期使用。依據(jù)上述各算法層之間的關(guān)系,可以組合出軌跡規(guī)劃子程序的總體程序流程圖,如下圖所示:行為控制層坐標(biāo)計(jì)算層基礎(chǔ)控制層數(shù)據(jù)接口1數(shù)據(jù)接口2主程序調(diào)用入口0主程序調(diào)用出口0圖4.1.4 軌跡規(guī)劃子程序總體程序流程圖4.2機(jī)器人系統(tǒng)及環(huán)境的軟件化硬件及環(huán)境的軟件化技術(shù)是一種脫離硬件及實(shí)際環(huán)境對(duì)程序進(jìn)行檢測(cè)、仿真的編程技術(shù),也是對(duì)機(jī)器人軌跡進(jìn)行規(guī)劃的過(guò)程中必不可少的一種技術(shù)。它將避障程序運(yùn)行必需的硬件功能及環(huán)境影響,用擁有同樣功效的程序表達(dá)出來(lái),以檢測(cè)避障程序正確與否。1.以下便是支持避障程序運(yùn)行必需的各項(xiàng)硬件功能:(1) 測(cè)量8個(gè)超聲波傳感器與障礙物之間的距離。(2) 系統(tǒng)停止調(diào)用避障子程序的功能。(3) 機(jī)器人運(yùn)行軌跡的可視化功能。2.以下可視為環(huán)境對(duì)程序的影響:(1)機(jī)器人運(yùn)行前,設(shè)置障礙物的大小及坐標(biāo)。根據(jù)上述原理和各項(xiàng)需要模擬的功能,可以使用數(shù)學(xué)建模的方法進(jìn)行軟件化編程。首先,需要對(duì)上述邏輯化步驟進(jìn)行排序。因?yàn)闄C(jī)器人行為是一種仿人的行為,因此,可將上述功能及影響對(duì)應(yīng)相關(guān)的“神經(jīng)傳導(dǎo)過(guò)程”進(jìn)行排序,并在排序后設(shè)計(jì)相應(yīng)的系統(tǒng)程序流程圖。排序及功能對(duì)應(yīng)的圖形如下:環(huán)境識(shí)別功能神經(jīng)傳遞功能行為決策功能行為動(dòng)作功能1神經(jīng)反射功能傳感器測(cè)距功能軌跡規(guī)劃子程序功能停止調(diào)用子程序行為動(dòng)作功能2軌跡可視化功能行為動(dòng)作功能0圖4.2.1 神經(jīng)傳導(dǎo)模型排序圖圖4.2.1中的“神經(jīng)傳遞功能”相當(dāng)于數(shù)據(jù)輸入功能,而“行為決策功能”相當(dāng)于偏角計(jì)算及算法層次選擇的功能,“行為動(dòng)作功能”則對(duì)應(yīng)機(jī)器人下步坐標(biāo)的確立過(guò)程?!吧窠?jīng)反射功能”的任務(wù)則是輸出必要數(shù)據(jù),并判斷是否應(yīng)該結(jié)束循環(huán)。由這些功能組成模塊,正是機(jī)器人軌跡規(guī)劃子程序部分。程序開(kāi)始測(cè)量障礙物距離放置障礙物避障子程序是否停止避障子程序繪制機(jī)器人運(yùn)行軌跡程序結(jié)束YN圖4.2.2 系統(tǒng)程序流程圖4.3超聲波傳感器測(cè)距功能的模擬根據(jù)圖4.2.2給出的系統(tǒng)程序流程,可知,在機(jī)器人系統(tǒng)及環(huán)境的軟件化過(guò)程中,傳感器測(cè)距功能的模擬最為繁雜。主要的解決思路是建立適當(dāng)?shù)臄?shù)學(xué)模型,通過(guò)對(duì)模型的具體分析,運(yùn)用幾何學(xué)知識(shí)計(jì)算超聲波傳感器與障礙物之間的距離值。為了方便計(jì)算,可用微分學(xué)將障礙物設(shè)為由多個(gè)已知坐標(biāo)和半徑的圓組成的任意形狀。而傳感器到障礙物之間的距離可參考以下幾何建模的方法計(jì)算得出:VAX軸正方向第4號(hào)傳感器朝向wM角Xex , ya , b機(jī)器人障礙物圖4.3 機(jī)器人測(cè)距功能數(shù)學(xué)模型圖根據(jù)上圖分析可設(shè)機(jī)器人半徑為r ,障礙物半徑為R 。實(shí)線(xiàn)M就是需要求取的障礙物與第i號(hào)傳感器之間的距離。點(diǎn)劃線(xiàn)A是機(jī)器人中心與障礙物圓心的連線(xiàn),它與X正方向的夾角記為Ze 。第i號(hào)傳感器與第4號(hào)傳感器之間的夾角記為Ke ,在圖上反映為實(shí)線(xiàn)M與第4號(hào)傳感器之間的夾角。因?yàn)闄C(jī)器人圓心坐標(biāo)(x ,y)可由避障子程序求得,而障礙物圓心(a ,b)又是已知值,因此,可用C語(yǔ)言表示出Ze值。Ze=atan2(b-y),(a-x);根據(jù)圖3.1.1可知相鄰兩個(gè)超聲波傳感器的夾角為45度,那么,Xe的值可分為兩種情況,分別求取:當(dāng)i < 4時(shí),第i號(hào)傳感器在第4號(hào)傳感器左邊。Xe = Ze-pe-(4-i)*45;當(dāng)i >= 4時(shí),第i號(hào)傳感器在第4號(hào)傳感器右邊。Xe = pe-Ze-(i-4)*45;已知Xe值后,通過(guò)正余弦公式便可求得機(jī)器人與障礙物之間的距離M 。其C程序表達(dá)式如下:N=A*sin(Xe);M = abs(A*cos(Xe)-sqrt(R*R-N*N)-r;4.4避障子程序與實(shí)用主程序的銜接組合將4.1中提及的三層算法整理到一起就可以組裝成實(shí)現(xiàn)避障行為的子程序。將該子程序代替圖3.1.3的總體軟件框架中的“運(yùn)行超聲波避障”部分,就可構(gòu)成實(shí)用程序的流程圖了。開(kāi)始初始化,開(kāi)中斷有按鍵?鍵盤(pán)處理按下鍵值X?運(yùn)行紅外避障電機(jī)處理程序電機(jī)處理程序輸出顯示結(jié)束返回運(yùn)行顯示處理行為控制層坐標(biāo)計(jì)算層基礎(chǔ)控制層數(shù)據(jù)接口1數(shù)據(jù)接口2主程序調(diào)用入口0主程序調(diào)用出口0圖4.4 避障機(jī)器人運(yùn)行實(shí)用程序流程圖4.5難點(diǎn)程序化優(yōu)化處理在對(duì)程序詳細(xì)設(shè)計(jì)的過(guò)程中,難免遇到一些難以表達(dá),或表達(dá)不到位的地方,比如角度換算問(wèn)題、障礙物放置個(gè)數(shù)問(wèn)題以及虛擬超聲波的穿透測(cè)距問(wèn)題。在避障子程序和仿真主程序中,大量使用了角度這一變量。為了表示機(jī)器人轉(zhuǎn)動(dòng)這一動(dòng)作,角度就必須帶上正負(fù)符號(hào)。當(dāng)然,真正需要注意的并不是角度的符號(hào)問(wèn)題,而是“角度”與“弧度”的互換問(wèn)題。在C程序中,有關(guān)正弦、余弦、正切、余切及其反函數(shù)的計(jì)算,一般都是以弧度作為角的單位被使用的,因此,在角的單位處理上,需要特別留意。處理方法一般是根據(jù)“弧度”和“角度”的關(guān)系式進(jìn)行互相轉(zhuǎn)換,“360=2弧度”,子程序中的處理如下:E=(180*atan2(Y,X)/3.14; /*機(jī)器人圓心到目標(biāo)點(diǎn)的連線(xiàn)與橫坐標(biāo)X的夾角*/dx=p*cos(pe*3.14)/180); /*機(jī)器人每走一步,在橫坐標(biāo)上產(chǎn)生的變量值*/dy=p*sin(pe*3.14)/180); /*機(jī)器人每走一步,在縱坐標(biāo)上產(chǎn)生的變量值*/障礙物的放置動(dòng)作,反映在仿真程序中,相當(dāng)于由調(diào)試人員輸入多個(gè)定坐標(biāo)和半徑的圓的動(dòng)作。為了確??杀惠斎雸A的個(gè)數(shù)盡量多,可采用循環(huán)輸入方式置障。在循環(huán)過(guò)程中,因無(wú)法限制輸入圓的個(gè)數(shù),所以,必然會(huì)造成程序的死循環(huán)。因此,必須給循環(huán)定義一個(gè)結(jié)束標(biāo)準(zhǔn)。通??梢栽谳斎氤绦颉皊canf”中多加一個(gè)結(jié)束控制變量s,將s初值置為0,當(dāng)s=0時(shí),循環(huán)繼續(xù),當(dāng)s=1時(shí),跳出循環(huán)。子程序中的處理如下:for(j=0;s!=1;j+)scanf("%f,%f,%f,%d",&xbj,&ybj,&rbj,&s); /*依次輸入圓心坐標(biāo),圓的半徑,循環(huán)結(jié)束控制信號(hào)s的值*/setcolor(RED);setfillstyle(SOLID_FILL,RED);circle(xbj,ybj,rbj);n=j;虛擬超聲波的穿透測(cè)距問(wèn)題,在實(shí)際環(huán)境中,這是不可能發(fā)生的事情,但在程序中,計(jì)算機(jī)每次循環(huán)都需要對(duì)每個(gè)圓進(jìn)行測(cè)距,這是由程序的智能程度偏低造成的,也是不可避免的,為了得到真實(shí)的測(cè)量數(shù)據(jù),需要給原算法加上智能化較高的附加模塊。根據(jù)邏輯分析,當(dāng)同一傳感器得到多個(gè)返回值時(shí),最小的那個(gè)就是真實(shí)值。因此,可在原來(lái)算法的基礎(chǔ)上加上一段比較算法,得出最終真實(shí)值。子程序中的處理如下:for(i=0;i<=7;i+) /*比較出每個(gè)傳感器返回值中的最小值,并作為傳感器的真實(shí)返回值,送入避障子程序處理*/for(j=1;j<=n;j+)if(poij>poij-1)poij=poij-1;min=poij;di=min;以上設(shè)計(jì)難點(diǎn)僅為詳細(xì)編程時(shí)碰到的幾個(gè)理論上的疑難問(wèn)題,而具體調(diào)試過(guò)程中出現(xiàn)的實(shí)際問(wèn)題將在第5章,給出相應(yīng)解決方案。第5章 程序的仿真分析5.1仿真數(shù)據(jù)處理及分析為了檢測(cè)避障程序能否正常運(yùn)行,必須對(duì)其進(jìn)行仿真處理。在開(kāi)始仿真處理前,為了便于對(duì)仿真結(jié)果進(jìn)行分析,首先需在仿真主程序中將機(jī)器人起點(diǎn)設(shè)置為黃色,目標(biāo)點(diǎn)設(shè)為紅色,障礙物為綠色,機(jī)器人自身設(shè)為藍(lán)色,這可以方便觀(guān)察、分析。為了提高仿真的精確度,程序中衡量長(zhǎng)度的數(shù)據(jù)都以分米為單位。做好上述準(zhǔn)備后,就可以在TurboC2.0環(huán)境下開(kāi)始程序仿真了。為了對(duì)程序功能進(jìn)行全面的檢測(cè),障礙物放置方法越多越好。下面,從簡(jiǎn)入難對(duì)程序進(jìn)行仿真。1. 對(duì)單障礙物阻擋的仿真(1) 機(jī)器人左偏避障以下圖形中黃色的圓代表機(jī)器人行動(dòng)的起點(diǎn)坐標(biāo),其圓心坐標(biāo)為(20,20),半徑為20;藍(lán)色的圓組成的是機(jī)器人移動(dòng)的軌跡;綠色圓代表障礙物,其圓心坐標(biāo)為(150,150),半徑為50;紅色的圓代表目的地,圓心坐標(biāo)為(400,400),半徑為20。程序中設(shè)定的程序循環(huán)周期為4秒,速度為10分米每秒。圖5.1.1 單障礙物環(huán)境下,機(jī)器人的左偏運(yùn)動(dòng)根據(jù)對(duì)圖形5.1.1中,不同顏色的圓的相對(duì)位置分析可知,機(jī)器人可以成功的以左偏方式避開(kāi)正前方的障礙物,但卻穿越了目的地限定的紅色區(qū)域,這可視為沒(méi)有成功到達(dá)目的地??梢?jiàn),避障程序的循環(huán)周期過(guò)大了,因此,可將程序的循環(huán)周期改為2秒,從而可以得到較完美的圖形,圖5.1.2顯示了程序改進(jìn)后的效果。圖5.1.2單障礙物環(huán)境下,機(jī)器人的左偏運(yùn)動(dòng)的改進(jìn)圖(2) 機(jī)器人右偏避障以修改后的上述仿真為基礎(chǔ),保持起點(diǎn)圓和目的地圓的圓心坐標(biāo)及半徑不變,以函數(shù)輸入的形式,重新調(diào)整障礙物的圓心坐標(biāo)及半徑大小,可得到仿真圖5.1.3。改動(dòng)后的障礙物圓心坐標(biāo)為(150,140),半徑為50分米。圖5.1.3單障礙物環(huán)境下,機(jī)器人的右偏運(yùn)動(dòng)從圖5.1.3可看出機(jī)器人根據(jù)程序判斷出從右邊到目的地的距離比從左邊去短,并選擇了短距離避障的運(yùn)行方式。而且,機(jī)器人可以順利到達(dá)目的地。但圖中,機(jī)器人運(yùn)行軌跡仍有與障礙物接觸的點(diǎn),表明程序循環(huán)周期依然過(guò)大,繼續(xù)進(jìn)行改進(jìn),其改進(jìn)效果在“機(jī)器人對(duì)雙障礙物的同側(cè)避障”圖5.1.4中顯得較為可觀(guān)。2. 對(duì)多障礙物阻擋情況的仿真(1) 機(jī)器人對(duì)雙障礙物的同側(cè)避障在保證起點(diǎn)和目的地圓心坐標(biāo)及半徑不變的條件下,可繼續(xù)添加障礙物來(lái)檢測(cè)機(jī)器人是否有避開(kāi)多個(gè)障礙的能力。輸入一號(hào)障礙物圓心坐標(biāo)(150,150),半徑50分米;二號(hào)障礙物圓心坐標(biāo)(300,300),半徑50分米??紤]到新加障礙物可能影響機(jī)器人行走的精確度,可將程序循環(huán)周期改為1秒,仿真后得到圖5.1.4。圖5.1.4機(jī)器人對(duì)雙障礙物的同側(cè)避障1根據(jù)上圖中機(jī)器人的軌跡分析可知機(jī)器人擁有對(duì)多重障礙物的避障功能,并可以按指令到達(dá)目標(biāo)點(diǎn)。當(dāng)然,這里的多重障礙物是非連續(xù)分布。(2) 機(jī)器人對(duì)雙障礙物的異側(cè)避障為了檢測(cè)機(jī)器人在進(jìn)行多重障礙物避障的行為過(guò)程中是否依然具有近距離選擇,這一智能行為,可繼續(xù)改變障礙物的位置分布狀況。入一號(hào)障礙物圓心坐標(biāo)(150,150),半徑50分米;二號(hào)障礙物圓心坐標(biāo)(250,150),半徑50分米。仿真后,生成下圖5.1.5。圖5.1.5機(jī)器人對(duì)雙障礙物的異側(cè)避障 觀(guān)察圖5.1.5,可發(fā)現(xiàn)機(jī)器人并不是從兩個(gè)障礙物的同側(cè)饒過(guò),而是選擇了相對(duì)較短的路程,從障礙物中間穿過(guò),并成功避開(kāi)了障礙物,到達(dá)目的地,這說(shuō)明,在該程序的支持下,機(jī)器人可以實(shí)現(xiàn)智能化較高的避障處理方式了。 (3) 機(jī)器人對(duì)壁形障礙物的避障在機(jī)器人運(yùn)行起點(diǎn)和目的地之間,放置一串圓心在同一直線(xiàn)上,半徑相同的圓形障礙物,組成壁形進(jìn)行仿真,這樣可測(cè)試機(jī)器人對(duì)連續(xù)障礙物的避障行為。根據(jù)壁形障礙物與機(jī)器人相對(duì)位置的多樣性,可做出如下兩種不同的仿真。當(dāng)壁形障礙物與起點(diǎn)到目的地的連線(xiàn)成任意不垂直的角度時(shí),這時(shí),由于機(jī)器人左右迫近程度的不同,機(jī)器人將按照最短路徑行走,如圖5.1.6;當(dāng)壁形障礙物與起點(diǎn)到目的地的連線(xiàn)垂直,且左右迫近程度相同時(shí),根據(jù)人工勢(shì)場(chǎng)法,機(jī)器人只能根據(jù)在該情況下設(shè)定的程序,選擇固定角度運(yùn)行。如圖5.1.7。圖5.1.6機(jī)器人對(duì)壁形障礙物的避障1 從上圖可直觀(guān)地看出,機(jī)器人再次以最短路徑繞過(guò)壁形障礙物,到達(dá)目的地,這再一次證明了程序的智能化。圖5.1.7 機(jī)器人對(duì)壁形障礙物的避障2 從圖5.1.7觀(guān)察到,機(jī)器人在避障程序的指導(dǎo)下,繞過(guò)障礙物,在每個(gè)程序循環(huán)周期中,其運(yùn)行方向都是與從第0號(hào)傳感器算起,第一個(gè)檢測(cè)到障礙物的傳感器的前一號(hào)傳感器朝向是一致的。之所以,不使用每個(gè)程序循環(huán)周期轉(zhuǎn)動(dòng)相同角度的老方法,是因?yàn)?,這種老方法在連續(xù)避障行為中,可能出現(xiàn)死循環(huán)。若這還不夠證明該程序避障的智能性,可繼續(xù)進(jìn)行更復(fù)雜的仿真。(4) 機(jī)器人在半包圍式障礙物內(nèi)的避障基于以上仿真原理排列出的半包圍結(jié)構(gòu)障礙物更具測(cè)試意義。對(duì)如果說(shuō),機(jī)器人對(duì)壁形障礙物避障仿真的成功證明了機(jī)器人具有躲避平面墻的功能,那么,在半包圍障礙物環(huán)境下的避障仿真則證明了機(jī)器人具有躲避垂直形墻角的功能,是在前一種仿真基礎(chǔ)上的進(jìn)步,也表明,該程序支持的機(jī)器人初步具有從房形障礙物中繞轉(zhuǎn)出來(lái)能力。仿真圖如下:圖5.1.8機(jī)器人在半包圍式障礙物內(nèi)的避障 上圖顯示的機(jī)器人成功躲避開(kāi)障礙物,并順利到達(dá)目的地。(5) 機(jī)器人關(guān)于前方兩邊障礙物之間距離小于機(jī)器人直徑的多障礙物避障為了測(cè)試機(jī)器人是否會(huì)穿過(guò)小于自身直徑的間隙,可做如下仿真,模擬小間隙情況。 專(zhuān)心-專(zhuān)注-專(zhuān)業(yè)