歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類(lèi) > PPT文檔下載  

信號(hào)系統(tǒng)與控制理論.ppt

  • 資源ID:5193424       資源大?。?span id="o7iqrhp" class="font-tahoma">880.31KB        全文頁(yè)數(shù):14頁(yè)
  • 資源格式: PPT        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫(xiě)的郵箱或者手機(jī)號(hào),方便查詢(xún)和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

信號(hào)系統(tǒng)與控制理論.ppt

10 4穩(wěn)定性與Liyaponov方法 1 理解Liyaponov穩(wěn)定性的定義 10 4 1Liyaponov關(guān)于穩(wěn)定性的定義 1 系統(tǒng)的平衡狀態(tài) 設(shè)初始條件 t0 x0 的唯一解為 稱(chēng)為從初始條件 t0 x0 出發(fā)的運(yùn)動(dòng)軌跡 運(yùn)動(dòng) 狀態(tài)軌線 的xe 稱(chēng)為系統(tǒng)的平衡狀態(tài) 2 掌握穩(wěn)定性的判定方法 要求 滿足 例 其平衡點(diǎn)為 結(jié)論 非線性系統(tǒng)的平衡點(diǎn)可能不唯一 也可能無(wú) 任何一個(gè)平衡狀態(tài)可以通過(guò)坐標(biāo)平移至坐標(biāo)原點(diǎn)xe 0處 2 關(guān)于穩(wěn)定性的幾個(gè)定義 定義 稱(chēng)為歐幾里德范數(shù)即x與xe的距離 1 Liyaponov意義下的穩(wěn)定 稱(chēng)平衡狀態(tài)xe為L(zhǎng)iyaponov意義下的穩(wěn)定 簡(jiǎn)稱(chēng)穩(wěn)定 2 漸近穩(wěn)定 xe穩(wěn)定且從初始狀態(tài)出發(fā)的狀態(tài)軌線收斂于xe 3 大范圍漸近穩(wěn)定 對(duì)所有的初始狀態(tài)x0都漸近穩(wěn)定 4 不穩(wěn)定 由s 內(nèi)出發(fā)的狀態(tài)軌線至少有一根會(huì)越過(guò)s 稱(chēng)xe不穩(wěn)定 結(jié)論 x t 有界 xe穩(wěn)定 x t 有界且 0 xe漸近穩(wěn)定 x t 無(wú)界 xe不穩(wěn)定 10 4 2Liyaponov第一法 線性定常 時(shí)不變 系統(tǒng)的穩(wěn)定判據(jù) 系統(tǒng)在平衡狀態(tài)xe 0漸近穩(wěn)定的充分必要條件是A的所有特征值全部具有負(fù)實(shí)部 為內(nèi)部穩(wěn)定性 若系統(tǒng)對(duì)于有界輸入 所引起的輸出有界 則稱(chēng)系統(tǒng)為輸出穩(wěn)定 輸出穩(wěn)定的充要條件是W s C SI A 1b的極點(diǎn)全部位于s的左半平面 例1判定系統(tǒng) 的狀態(tài)穩(wěn)定性和輸出穩(wěn)定性 解 由 得 故系統(tǒng)平衡狀態(tài)不是漸近穩(wěn)定的 由 s 1位于s的左半平面 因而系統(tǒng)輸出穩(wěn)定 結(jié)論 只有系統(tǒng)無(wú)零 極點(diǎn)對(duì)消且系統(tǒng)的特征值與其極點(diǎn)相同時(shí) 系統(tǒng)的狀態(tài)穩(wěn)定性才與其輸出穩(wěn)定性一致 10 4 3Liaponov第二法 基本思想 構(gòu)造虛擬廣義的能量函數(shù)V x 以此判定系統(tǒng)的穩(wěn)定性 適用范圍 不能用傳統(tǒng)方法判定系統(tǒng)的穩(wěn)定性的情況下 定義V 0 0的V x 為L(zhǎng)iaponov函數(shù) 亦稱(chēng)能量函數(shù) 是標(biāo)量函數(shù) 1 V x 的符號(hào)性質(zhì) 正定 半正定 負(fù)定 半負(fù)定 不定 V x 0 V x 0 V x 0 V x 0 V x 0或V x 0 例對(duì)于x x1x2x3 T V x x12 x22 x32 V x x1 x2 2 x32 V x x12 x22 2 二次型標(biāo)量函數(shù) 正定 半正定 半正定 各主子行列式的值均 0 且 P 0 P半負(fù)定 P為實(shí)對(duì)稱(chēng)陣 存在正交陣T 使當(dāng) 時(shí) 有 稱(chēng)為二次標(biāo)準(zhǔn)型 V x 正定的充要條件是P的特征值均大于0 P的符號(hào)性質(zhì) V x 正定 P正定 記為P 0 3 希爾維斯特判據(jù) 實(shí)對(duì)稱(chēng)陣P符號(hào)性質(zhì)的充分必要條件是 各主子行列式的值均大于0 P正定 偶數(shù)階和奇數(shù)階主子行列式的值分別大于0和小于0 P負(fù)定 各主子行列式的值均 0 且 P 0 P半正定 V x 負(fù)定 P負(fù)定 記為P 0 V x 半正定 P半正定 記為P 0 V x 半負(fù)定 P半負(fù)定 記為P 0 行列式的值為1 逆陣和轉(zhuǎn)置陣相等 4 Liaponov穩(wěn)定性判據(jù) 的平衡狀態(tài)為xe 0 有V x 滿足 對(duì)x有連續(xù)一階偏導(dǎo) V x 正定 則 為半負(fù)定 但對(duì)任意的x t0 0除x 0外的其它x 也漸近穩(wěn)定 注意 不能說(shuō)找不到Liaponov函數(shù)V x 就作出否定的結(jié)論 例1判定 設(shè) 為負(fù)定 則漸近穩(wěn)定 為正定 不穩(wěn)定 為半負(fù)定 則穩(wěn)定 不恒為0 更進(jìn)一步 x 有V x 則為大范圍漸近穩(wěn)定 的穩(wěn)定性 平衡狀態(tài)必須是坐標(biāo)原點(diǎn)即xe 0 否則須坐標(biāo)平移 解 xe 0 設(shè) 易知其正定 則 故系統(tǒng)漸近穩(wěn)定 且當(dāng) x 時(shí) 有V x 所以為大范圍漸近穩(wěn)定 例2判定 的穩(wěn)定性 解 xe 0 設(shè) 易知其正定 則 半負(fù)定 負(fù)定 若 必有x2 0 由于 因此必然x1 0 只在平衡點(diǎn)才為0 其余不為0 故系統(tǒng)是漸近穩(wěn)定的 亦即 且當(dāng) x 時(shí) 有V x 所以為大范圍漸近穩(wěn)定 例3確定 平衡狀態(tài)大范圍漸近穩(wěn)定的條件 解 由 設(shè) 易知其正定 則 故系統(tǒng)平衡狀態(tài)漸近穩(wěn)定 且當(dāng) x 時(shí) 有V x 所以該系統(tǒng)大范圍漸近穩(wěn)定 條件是a 0 當(dāng)a 0時(shí)半負(fù)定 可得xe 0 若 必有x2 0 由于 因此必然x1 0 亦即 不恒為0 例4確定 平衡狀態(tài)的穩(wěn)定性 解 由狀態(tài)方程可得 平衡狀態(tài)非坐標(biāo)原點(diǎn) 設(shè) 即 則狀態(tài)方程變?yōu)?Liaponov函數(shù)的說(shuō)明 2 必須是應(yīng)用于穩(wěn)定性判據(jù)的標(biāo)量函數(shù) 且有一階連續(xù)偏導(dǎo) 1 構(gòu)造Liaponov函數(shù)沒(méi)有確定的方法 要求有一定的技巧 一般用于非線性系統(tǒng)或時(shí)變系統(tǒng)的穩(wěn)定性判定 3 非唯一但不影響結(jié)論的正確性 4 最簡(jiǎn)單的形式為二次型 作業(yè) P66610 39 10 43 設(shè) 易知其正定 則 且當(dāng) 所以該系統(tǒng)大范圍漸近穩(wěn)定 半負(fù)定 若 必有 由于 因此必然 亦即 不恒為0 易知其平衡狀態(tài)為坐標(biāo)原點(diǎn) 時(shí) 有 課堂思考 確定 平衡狀態(tài)大范圍漸近穩(wěn)定的條件 5 Liaponov方法的應(yīng)用 1 線性定常連續(xù)系統(tǒng)漸近穩(wěn)定判據(jù) 判據(jù) 的平衡狀態(tài)xe 0大范圍漸近穩(wěn)定 對(duì)于任意給 定的正定實(shí)對(duì)稱(chēng)矩陣Q 存在正定的實(shí)對(duì)稱(chēng)矩陣P 滿足Liaponov方程 是系統(tǒng)的Liaponov函數(shù) 且 說(shuō)明 通常取Q I 舉例 的穩(wěn)定性 判定系統(tǒng) 有 設(shè) 解 解得 且系統(tǒng)的Liaponov函數(shù)是 Riccati矩陣微分方程 解為 P正定 系統(tǒng)大范圍漸近穩(wěn)定 2 線性時(shí)變連續(xù)系統(tǒng)漸近穩(wěn)定判據(jù) 的平衡狀態(tài)xe 0大范圍漸近穩(wěn)定 對(duì)于任意 給定的連續(xù)實(shí)對(duì)稱(chēng)矩陣正定Q t 必存在一個(gè)連續(xù)對(duì)稱(chēng)正定的矩陣P t 滿足 P 使下列矩陣 平衡狀態(tài)xe 0漸近穩(wěn)定的充分條件是 任給正定實(shí)對(duì)稱(chēng)矩陣 亦即Krasovski法 5 非線性系統(tǒng)漸近穩(wěn)定的Jacobian矩陣法 是系統(tǒng)的Liaponov函數(shù) 且 意給定的正定實(shí)對(duì)稱(chēng)矩陣Q 必存在一個(gè)正定的實(shí)對(duì)稱(chēng)矩陣P 滿足 對(duì)于任 平衡狀態(tài)xe 0大范圍漸近穩(wěn)定 4 線性時(shí)變離散時(shí)間系統(tǒng)漸近穩(wěn)定判據(jù) 且 是系統(tǒng)的Liaponov函數(shù) 意給定的正定實(shí)對(duì)稱(chēng)矩陣Q 必存在一個(gè)正定的實(shí)對(duì)稱(chēng)矩陣P 滿足 平衡狀態(tài)xe 0大范圍漸近穩(wěn)定 對(duì)于任 3 線性定常離散時(shí)間系統(tǒng)漸近穩(wěn)定判據(jù) 解 例分析系統(tǒng) 在xe 0的穩(wěn)定性 若 x 有V x 則為大范圍漸近穩(wěn)定 是系統(tǒng)的一個(gè)Liaponov函數(shù) 正定 且 取P I 則 Q x 正定 且 x 有 則系統(tǒng)的平衡點(diǎn)xe 0為大范圍漸進(jìn)穩(wěn)定

注意事項(xiàng)

本文(信號(hào)系統(tǒng)與控制理論.ppt)為本站會(huì)員(xt****7)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!