2018年秋高中數(shù)學(xué) 課時(shí)分層作業(yè)7 函數(shù)的最大(?。┲蹬c導(dǎo)數(shù) 新人教A版選修2-2.doc
課時(shí)分層作業(yè)(七)函數(shù)的最大(小)值與導(dǎo)數(shù)(建議用時(shí):40分鐘)基礎(chǔ)達(dá)標(biāo)練一、選擇題1已知函數(shù)f(x),g(x)均為a,b上的可導(dǎo)函數(shù),在a,b上連續(xù)且f(x)g(x),則f(x)g(x)的最大值為()Af(a)g(a)Bf(b)g(b)Cf(a)g(b)Df(b)g(a)A令F(x)f(x)g(x),則F(x)f(x)g(x),又f(x)g(x),故F(x)0,F(xiàn)(x)在a,b上單調(diào)遞減,F(xiàn)(x)maxF(a)f(a)g(a)2函數(shù)y的最大值為()Ae1BeCe2 DA令y0(x0),解得xe.當(dāng)xe時(shí),y0;當(dāng)0xe時(shí),y0.y極大值f(e),在定義域(0,)內(nèi)只有一個(gè)極值,所以ymax.3函數(shù)f(x)x2ex1,x2,1的最大值為() 【導(dǎo)學(xué)號(hào):31062064】A4e1B1Ce2D3e2Cf(x)(x22x)ex1x(x2)ex1,f(x)0得x2或x0.又當(dāng)x2,1時(shí),ex10,當(dāng)2x0時(shí),f(x)0;當(dāng)0x1時(shí)f(x)0.f(x)在(2,0)上單調(diào)遞減,在(0,1)上單調(diào)遞增又f(2)4e1,f(1)e2,f(x)的最大值為e2.4已知函數(shù)f(x)x312x8在區(qū)間3,3上的最大值與最小值分別為M,m,則Mm的值為()A16B12C32D6Cf(x)3x2123(x2)(x2),由f(3)17,f(3)1,f(2)24,f(2)8,可知Mm24(8)32.5函數(shù)f(x)x33axa在(0,1)內(nèi)有最小值,則a的取值范圍為()A0a<1B0<a<1C1<a<1D0<a<Bf(x)3x23a,則f(x)0有解,可得ax2.又x(0,1),0<a<1.故選B.二、填空題6函數(shù)f(x)x33x29xk在區(qū)間4,4上的最大值為10,則其最小值為_(kāi). 【導(dǎo)學(xué)號(hào):31062065】解析f(x)3x26x93(x3)(x1)由f(x)0得x3或x1.又f(4)k76,f(3)k27,f(1)k5,f(4)k20.則f(x)maxk510,得k5,f(x)maxk7671.答案717已知函數(shù)f(x)ex2xa有零點(diǎn),則a的取值范圍是_. 【導(dǎo)學(xué)號(hào):31062066】解析函數(shù)f(x)ex2xa有零點(diǎn),即方程ex2xa0有實(shí)根,即函數(shù)g(x)2xex,ya有交點(diǎn),而g(x)2ex,易知函數(shù)g(x)2xex在(,ln 2)上遞增,在(ln 2,)上遞減,因而g(x)2xex的值域?yàn)?,2ln 22,所以要使函數(shù)g(x)2xex,ya有交點(diǎn),只需a2ln 22即可答案(,2ln 228已知函數(shù)f(x)2ln x,若當(dāng)a>0時(shí),f(x)2恒成立,則實(shí)數(shù)a的取值范圍是_解析由f(x)2ln x得f(x),又函數(shù)f(x)的定義域?yàn)?0,),且a>0,令f(x)0,得x(舍去)或x.當(dāng)0<x<時(shí),f(x)<0;當(dāng)x>時(shí),f(x)>0.故x是函數(shù)f(x)的極小值點(diǎn),也是最小值點(diǎn),且f()ln a1.要使f(x)2恒成立,需ln a12恒成立,則ae.答案e,)三、解答題9設(shè)函數(shù)f(x)ln(2x3)x2.(1)討論f(x)的單調(diào)性;(2)求f(x)在區(qū)間上的最大值和最小值解易知f(x)的定義域?yàn)?(1)f(x)2x.當(dāng)<x<1時(shí),f(x)>0;當(dāng)1<x<時(shí),f(x)<0;當(dāng)x>時(shí),f(x)>0,從而f(x)在區(qū)間,上單調(diào)遞增,在區(qū)間上單調(diào)遞減(2)由(1)知f(x)在區(qū)間上的最小值為fln 2.又因?yàn)閒flnlnln<0,所以f(x)在區(qū)間上的最大值為fln.10已知函數(shù)f(x)x33x29xa.(1)求f(x)的單調(diào)遞減區(qū)間;(2)若f(x)2 017對(duì)于x2,2恒成立,求a的取值范圍解(1)f(x)3x26x9.由f(x)<0,得x<1或x>3,所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(,1),(3,)(2)由f(x)0,2x2,得x1.因?yàn)閒(2)2a,f(2)22a,f(1)5a,故當(dāng)2x2時(shí),f(x)min5a.要使f(x)2 017對(duì)于x2,2恒成立,只需f(x)min5a2 017,解得a2 022.能力提升練1已知函數(shù)f(x)x3ax24在x2處取得極值,若m,n1,1,則f(m)f(n)的最小值是()A13B15C10D15A對(duì)函數(shù)f(x)求導(dǎo)得f(x)3x22ax,由函數(shù)f(x)在x2處取得極值知f(2)0,即342a20,a3.由此可得f(x)x33x24,f(x)3x26x,易知f(x)在1,0)上單調(diào)遞減,在(0,1上單調(diào)遞增,當(dāng)m1,1時(shí),f(m)minf(0)4.又f(x)3x26x的圖象開(kāi)口向下,且對(duì)稱軸為x1,當(dāng)n1,1時(shí),f(n)minf(1)9,故f(m)f(n)的最小值為13.2若函數(shù)f(x)3xx3在區(qū)間(a212,a)上有最小值,則實(shí)數(shù)a的取值范圍是()A(1,)B(1,4)C(1,2D(1,2)C由f(x)33x20,得x1.當(dāng)x變化時(shí),f(x)及f(x)的變化情況如下表:x(,1)1(1,1)1(1,)f(x)00f(x)22由此得a2121a,解得1a.又當(dāng)x(1,)時(shí),f(x)單調(diào)遞減,且當(dāng)x2時(shí),f(x)2.a2.綜上,1a2.3已知a4x34x21對(duì)任意x1,1都成立,則實(shí)數(shù)a的取值范圍是_. 【導(dǎo)學(xué)號(hào):31062067】解析設(shè)f(x)4x34x21,則f(x)12x28x4x(3x2)由f(x)0得x或x0.又f(1)1,f,f(0)1,f(1)9,故f(x)在1,1上的最小值為1.故a1.答案(,14已知函數(shù)f(x)x3x26xa,若x01,4,使f(x0)2a成立,則實(shí)數(shù)a的取值范圍是_解析f(x0)2a,即xx6x0a2a,可化為xx6x0a,設(shè)g(x)x3x26x,則g(x)3x29x63(x1)(x2)0,得x1或x2.g(1),g(2)2,g(1),g(4)16.由題意,g(x)minag(x)max,a16.答案5已知函數(shù)f(x)(xk)ex.(1)求f(x)的單調(diào)區(qū)間;(2)求f(x)在區(qū)間0,1上的最小值. 【導(dǎo)學(xué)號(hào):31062068】解(1)f(x)(xk1)ex.令f(x)0,得xk1.令x變化時(shí),f(x)與f(x)的變化情況如下表:x(,k1)k1(k1,)f(x)0f(x)ek1所以,f(x)的單調(diào)遞減區(qū)間是(,k1);單調(diào)遞增區(qū)間是(k1,)(2)當(dāng)k10,即k1時(shí),函數(shù)f(x)在0,1上單調(diào)遞增,所以f(x)在區(qū)間0,1上的最小值為f(0)k;當(dāng)0k11,即1k2時(shí),由(1)知f(x)在0,k1)上單調(diào)遞減,在(k1,1上單調(diào)遞增,所以f(x)在區(qū)間0,1上的最小值為f(k1)ek1;當(dāng)k11,即k2時(shí),函數(shù)f(x)在0,1上單調(diào)遞減,所以f(x)在區(qū)間0,1上的最小值為f(1)(1k)e.