新編廣東省廣州市高考數(shù)學(xué)一輪復(fù)習(xí) 專項檢測試題:30 函數(shù)綜合測試題2
-
資源ID:63046553
資源大?。?span id="o40i1s1" class="font-tahoma">194KB
全文頁數(shù):4頁
- 資源格式: DOC
下載積分:10積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
新編廣東省廣州市高考數(shù)學(xué)一輪復(fù)習(xí) 專項檢測試題:30 函數(shù)綜合測試題2
函數(shù)綜合測試題029、已知函數(shù)為偶函數(shù),且(1)求的值,并確定的解析式;(2)若,在上為增函數(shù),求實數(shù)的取值范圍。解:(1)由,又當(dāng)為奇函數(shù),不合題意,舍去;當(dāng)為偶函數(shù),滿足題設(shè),故。(2)令,若在其定義域內(nèi)單調(diào)遞減,要使上單調(diào)遞增,則需上遞減,且,即,若在其定義域內(nèi)單調(diào)遞增,要使上單調(diào)遞增,則需上遞增,且,即; 綜上所述,實數(shù)的取值范圍是。 10、對定義在上,并且同時滿足以下兩個條件的函數(shù)稱為函數(shù),對任意的,總有;當(dāng)時,總有成立;已知函數(shù)與是定義在上的函數(shù)。(1)試問函數(shù)是否為函數(shù)?并說明理由;(2)若函數(shù)是函數(shù),求實數(shù)組成的集合。解:(1)當(dāng)時,總有,滿足,當(dāng)時,滿足;(2)為增函數(shù),;由,得,即;因為,所以,與不同時等于1 ,當(dāng)時,綜合,。11、已知函數(shù)。(1)將的圖象向右平移兩個單位,得到函數(shù),求函數(shù)的解析式;(2)函數(shù)與函數(shù)的圖象關(guān)于直線對稱,求函數(shù)的解析式;(3)設(shè),已知的最小值是且,求實數(shù)的取值范圍。解:(1)(2)設(shè)的圖象上一點,點關(guān)于的對稱點為,由點在的圖象上,所以,于是即(3);設(shè),則;問題轉(zhuǎn)化為:,對恒成立,即:,對恒成立。(*)故必有(否則,若,則關(guān)于的二次函數(shù)開口向下,當(dāng)充分大時,必有;而當(dāng)時,顯然不能保證(*)成立),此時,由于二次函數(shù)的對稱軸方程為,所以,問題等價于,即,解之得:;此時,故在取得最小值滿足條件。點評:緊扣二次函數(shù)的頂點式對稱軸、最值、判別式顯合力。12、對于在區(qū)間上有意義的兩個函數(shù)與,如果對任意的,均有,則稱與在上是接近的,否則稱與在上是非接近的,現(xiàn)有兩個函數(shù)與,給定區(qū)間。(1)若與在給定區(qū)間上都有意義,求實數(shù)的取值范圍;(2)討論與在給定區(qū)間上是否是接近的。解:(1)兩個函數(shù)與在給定的一個區(qū)間有意義,函數(shù)在給定區(qū)間上單調(diào)遞增,函數(shù)在給定區(qū)間上恒為正數(shù),故有意義,當(dāng)且僅當(dāng);(2)構(gòu)造函數(shù),對于函數(shù)來講, 顯然其在上單調(diào)遞減,在上單調(diào)遞增,且在其定義域內(nèi)一定是減函數(shù)。由于,得,所以原函數(shù)在區(qū)間內(nèi)單調(diào)遞減,只需保證當(dāng)時,與在區(qū)間上是接近的;當(dāng)時,與在區(qū)間上是非接近的。