歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

新版高考數(shù)學(xué)理科一輪【學(xué)案16】定積分及其簡單的應(yīng)用含答案

  • 資源ID:63679165       資源大?。?span id="444lyur" class="font-tahoma">407KB        全文頁數(shù):10頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

新版高考數(shù)學(xué)理科一輪【學(xué)案16】定積分及其簡單的應(yīng)用含答案

1 1學(xué)案16定積分及其簡單的應(yīng)用導(dǎo)學(xué)目標(biāo): 1.以求曲邊梯形的面積和汽車變速行駛的路程為背景準確理解定積分的概念.2.理解定積分的簡單性質(zhì)并會簡單應(yīng)用.3.會說出定積分的幾何意義,能根據(jù)幾何意義解釋定積分.4.會用求導(dǎo)公式和導(dǎo)數(shù)運算法則,反方向求使F(x)f(x)的F(x),并運用牛頓萊布尼茨公式求f(x)的定積分.5.會通過求定積分的方法求由已知曲線圍成的平面圖形的面積.6.能熟練運用定積分求變速直線運動的路程.7.會用定積分求變力所做的功自主梳理1定積分的幾何意義:如果在區(qū)間a,b上函數(shù)f(x)連續(xù)且恒有f(x)0,那么函數(shù)f(x)在區(qū)間a,b上的定積分的幾何意義是直線_所圍成的曲邊梯形的_2定積分的性質(zhì)(1)kf(x)dx_ (k為常數(shù));(2)f1(x)±f2(x)dx_;(3)f(x)dx_.3微積分基本定理一般地,如果f(x)是區(qū)間a,b上的連續(xù)函數(shù),并且F(x)f(x),那么f(x)dxF(b)F(a),這個結(jié)論叫做_,為了方便,我們常把F(b)F(a)記成_,即f(x)dxF(x)|F(b)F(a)4定積分在幾何中的應(yīng)用(1)當(dāng)xa,b且f(x)>0時,由直線xa,xb (ab),y0和曲線yf(x)圍成的曲邊梯形的面積S_.(2)當(dāng)xa,b且f(x)<0時,由直線xa,xb (ab),y0和曲線yf(x)圍成的曲邊梯形的面積S_.(3)當(dāng)xa,b且f(x)>g(x)>0時,由直線xa,xb (ab)和曲線yf(x),yg(x)圍成的平面圖形的面積S_.(4)若f(x)是偶函數(shù),則f(x)dx2f(x)dx;若f(x)是奇函數(shù),則f(x)dx0.5定積分在物理中的應(yīng)用(1)勻變速運動的路程公式做變速直線運動的物體所經(jīng)過的路程s,等于其速度函數(shù)vv(t)v(t)0在時間區(qū)間a,b上的定積分,即_(2)變力做功公式一物體在變力F(x)(單位:N)的作用下做直線運動,如果物體沿著與F相同的方向從xa移動到xb (a<b)(單位:m),則力F所做的功W_.自我檢測1計算定積分3xdx的值為 ()A.B75C.D252定積分xdx等于 ()A.B.1C.D.3如右圖所示,陰影部分的面積是 ()A2B2C.D.4(20xx·湖南)dx等于 ()A2ln 2B2ln 2Cln 2Dln 25若由曲線yx2k2與直線y2kx及y軸所圍成的平面圖形的面積S9,則k_.探究點一求定積分的值例1計算下列定積分:(1);(2);(3)(2sin x3ex2)dx;(4)|x21|dx.變式遷移1計算下列定積分:(1)|sin x|dx;(2)sin2xdx.探究點二求曲線圍成的面積例2計算由拋物線yx2和y3(x1)2所圍成的平面圖形的面積S.變式遷移2計算曲線yx22x3與直線yx3所圍圖形的面積探究點三定積分在物理中的應(yīng)用例3一輛汽車的速度時間曲線如圖所示,求此汽車在這1 min內(nèi)所行駛的路程變式遷移3A、B兩站相距7.2 km,一輛電車從A站開往B站,電車開出t s后到達途中C點,這一段速度為1.2t m/s,到C點時速度達24 m/s,從C點到B點前的D點以勻速行駛,從D點開始剎車,經(jīng)t s后,速度為(241.2t)m/s,在B點恰好停車,試求:(1)A、C間的距離;(2)B、D間的距離;(3)電車從A站到B站所需的時間函數(shù)思想的應(yīng)用例(12分)在區(qū)間0,1上給定曲線yx2.試在此區(qū)間內(nèi)確定點t的值,使圖中的陰影部分的面積S1與S2之和最小,并求最小值【答題模板】解S1面積等于邊長為t與t2的矩形面積去掉曲線yx2與x軸、直線xt所圍成的面積,即S1t·t2x2dxt3.2分S2的面積等于曲線yx2與x軸,xt,x1圍成的面積去掉矩形面積,矩形邊長分別為t2,1t,即S2x2dxt2(1t)t3t2.4分所以陰影部分面積SS1S2t3t2(0t1)6分令S(t)4t22t4t0時,得t0或t.8分t0時,S;t時,S;t1時,S.10分所以當(dāng)t時,S最小,且最小值為.12分【突破思維障礙】本題既不是直接求曲邊梯形面積問題,也不是直接求函數(shù)的最小值問題,而是先利用定積分求出面積的和,然后利用導(dǎo)數(shù)的知識求面積和的最小值,難點在于把用導(dǎo)數(shù)求函數(shù)最小值的問題置于先求定積分的題境中,突出考查學(xué)生知識的遷移能力和導(dǎo)數(shù)的應(yīng)用意識1定積分f(x)dx的幾何意義就是表示由直線xa,xb (ab),y0和曲線yf(x)圍成的曲邊梯形的面積;反過來,如果知道一個這樣的曲邊梯形的面積也就知道了相應(yīng)定積分的值,如dx (半徑為2的個圓的面積),dx2.2運用定積分的性質(zhì)可以化簡定積分計算,也可以把一個函數(shù)的定積分化成幾個簡單函數(shù)定積分的和或差3計算一些簡單的定積分問題,解題步驟是:第一步,把被積函數(shù)變形為冪函數(shù)、正弦函數(shù)、余弦函數(shù)、指數(shù)函數(shù)與常數(shù)積的和或差;第二步,把定積分用定積分性質(zhì)變形為求被積函數(shù)為上述函數(shù)的定積分;第三步,分別用求導(dǎo)公式找到一個相應(yīng)的使F(x)f(x)的F(x);第四步,再分別用牛頓萊布尼茨公式求各個定積分的值后計算原定積分的值 (滿分:75分)一、選擇題(每小題5分,共25分)1下列值等于1的積分是 ()AxdxB(x1)dxCdxD1dx2(20xx·汕頭模擬)設(shè)函數(shù)f(x)則f(x)dx等于 ()A.B.C6D173已知f(x)為偶函數(shù)且f(x)dx8,則f(x)dx等于 ()A0B4C8D164(20xx·深圳模擬)曲線ysin x,ycos x與直線x0,x所圍成的平面區(qū)域的面積為 ()A0(sin xcos x)dxB20(sin xcos x)dxC0(cos xsin x)dxD20(cos xsin x)dx5(20xx·臨渭區(qū)高三調(diào)研)函數(shù)f(x)t(t4)dt在1,5上 ()A有最大值0,無最小值B有最大值0,最小值C有最小值,無最大值D既無最大值也無最小值題號12345答案二、填空題(每小題4分,共12分)6若1 N的力使彈簧伸長2 cm,則使彈簧伸長12 cm時克服彈力做的功為_J.7(2xk1)dx2,則k_.8(20xx·山東實驗中學(xué)高三三診)若f(x)在R上可導(dǎo),f(x)x22f(2)x3,則f(x)dx_.三、解答題(共38分)9(12分)計算以下定積分:(1)dx;(2)2dx;(3)0(sin xsin 2x)dx;(4)|32x|dx.10(12分)設(shè)yf(x)是二次函數(shù),方程f(x)0有兩個相等的實根,且f(x)2x2.(1)求yf(x)的表達式;(2)求yf(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積11(14分)求曲線yex1與直線xln 2,ye1所圍成的平面圖形的面積答案 自主梳理1xa,xb (ab),y0和曲線yf(x)面積2(1)kf(x)dx(2)f1(x)dx±f2(x)dx(3)f(x)dxf(x)dx(其中a<c<b)3.微積分基本定理F(x)|4.(1)f(x)dx(2)f(x)dx(3)f(x)g(x)dx5.(1)sv(t)dt(2)F(x)dx自我檢測1A2.A3.C4.D5±3解析由得(xk)20,即xk,所以直線與曲線相切,如圖所示,當(dāng)k>0時,S(x2k22kx)dx(xk)2dx(xk)3|0(k)3,由題意知9,k3.由圖象的對稱性可知k3也滿足題意,故k±3.課堂活動區(qū)例1解題導(dǎo)引(1)與絕對值有關(guān)的函數(shù)均可化為分段函數(shù)分段函數(shù)在區(qū)間a,b上的積分可分成幾段積分的和的形式分段的標(biāo)準是使每一段上的函數(shù)表達式確定,按照原函數(shù)分段的情況分即可,無需分得過細(2)f(x)是偶函數(shù),且在關(guān)于原點對稱的區(qū)間a,a上連續(xù),則f(x)dx2f(x)dx.解(1)dxxdxdxdxx2|ln x|(e21)(ln eln 1)e2.(2)0(sin x2cos x)dx0sin xdx20cos xdx(cos x)|02sin x|0cos (cos 0)21.(3)(2sin x3ex2)dx2sin xdx3exdx2dx2(cos x)|3ex|2x|2(cos )(cos 0)3(ee0)2(0)73e2.(4)0x2,于是|x21|x21|dx(1x2)dx(x21)dx|2.變式遷移1解(1)(cos x)sin x,|sin x|dx|sin x|dx|sin x|dxsin xdxsin xdxcos x|cos x|(cos cos 0)(cos 2cos )4.(2)sin2xdxdxdxcos 2xdxx|.例2解題導(dǎo)引求曲線圍成的面積的一般步驟為:(1)作出曲線的圖象,確定所要求的面積;(2)聯(lián)立方程解出交點坐標(biāo);(3)用定積分表示所求的面積;(4)求出定積分的值解作出函數(shù)yx2和y3(x1)2的圖象(如圖所示),則所求平面圖形的面積S為圖中陰影部分的面積解方程組得或所以兩曲線交點為A,B(2,2)所以S23(x1)2dx2x2dx2(x22x2)dx2x2dx22×4.變式遷移2解如圖,設(shè)f(x)x3,g(x)x22x3,兩函數(shù)圖象的交點為A,B,由得或曲線yx22x3與直線yx3所圍圖形的面積Sf(x)g(x)dx(x3)(x22x3)dx(x23x)dx|.故曲線與直線所圍圖形的面積為.例3解題導(dǎo)引用定積分解決變速運動的位置與路程問題時,將物理問題轉(zhuǎn)化為數(shù)學(xué)問題是關(guān)鍵變速直線運動的速度函數(shù)往往是分段函數(shù),故求積分時要利用積分的性質(zhì)將其分成幾段積分,然后求出積分的和,即可得到答案s(t)求導(dǎo)后得到速度,對速度積分則得到路程解方法一由速度時間曲線易知v(t)由變速直線運動的路程公式可得s3tdt30dt(1.5t90)dtt2|30t|1 350 (m)答此汽車在這1 min內(nèi)所行駛的路程是1 350 m.方法二由定積分的物理意義知,汽車1 min內(nèi)所行駛的路程就是速度函數(shù)在0,60上的積分,也就是其速度曲線與x軸圍成梯形的面積,s(ABOC)×30×(3060)×301 350 (m)答此汽車在這1 min內(nèi)所行駛的路程是1 350 m.變式遷移3解(1)設(shè)v(t)1.2t,令v(t)24,t20.A、C間距離|AC|1.2tdt(0.6t2)|0.6×202240 (m)(2)由D到B時段的速度公式為v(t)(241.2t) m/s,可知|BD|AC|240 (m)(3)|AC|BD|240 (m),|CD|7 200240×26 720 (m)C、D段用時280 (s)又A、C段與B、D段用時均為20 s,共用時2802020320 (s)課后練習(xí)區(qū)1D2.B3.D4.D5.B60.36解析設(shè)力F與彈簧伸長的長度x的關(guān)系式為Fkx,則1k×0.02,k50,F(xiàn)50x,伸長12 cm時克服彈力做的功W50xdxx2|×0.1220.36(J)71解析(2xk1)dx12,k1.818解析f(x)2x2f(2),f(2)42f(2),即f(2)4,f(x)x28x3,f(x)dx×334×323×318.9解(1)函數(shù)y2x2的一個原函數(shù)是yx3ln x,所以dxln 2ln 2.(3分)(2)2dxdx(2ln 24)ln .(6分)(3)函數(shù)ysin xsin 2x的一個原函數(shù)為ycos xcos 2x,所以0(sin xsin 2x)dx0.(9分)(3xx2)|1(x23x)|2.(12分)10解(1)設(shè)f(x)ax2bxc (a0),則f(x)2axb.又f(x)2x2,所以a1,b2,即f(x)x22xc.(4分)又方程f(x)0有兩個相等實根,所以44c0,即c1.故f(x)x22x1.(8分)(2)依題意,所求面積S(x22x1)dx|.(12分)11解畫出直線xln 2,ye1及曲線yex1如圖所示,則所求面積為圖中陰影部分的面積由解得B(1,e1)由解得A.(4分)此時,C(ln 2,e1),D(ln 2,0)所以SS曲邊梯形BCDOS曲邊三角形OAD(e1)dx(ex1)dx(7分)(e1)x|(exx)|(exx)| (10分)(e1)(1ln 2)(e1e0)|e0(eln 2ln 2)|(e1)(1ln 2)(e2)ln 2eln 2.(14分)

注意事項

本文(新版高考數(shù)學(xué)理科一輪【學(xué)案16】定積分及其簡單的應(yīng)用含答案)為本站會員(仙***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!