新版廣東省廣州市高考數(shù)學(xué)一輪復(fù)習(xí) 專(zhuān)項(xiàng)檢測(cè)試題:30 函數(shù)綜合測(cè)試題2
-
資源ID:64169801
資源大小:196KB
全文頁(yè)數(shù):4頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
新版廣東省廣州市高考數(shù)學(xué)一輪復(fù)習(xí) 專(zhuān)項(xiàng)檢測(cè)試題:30 函數(shù)綜合測(cè)試題2
新版-新版數(shù)學(xué)高考復(fù)習(xí)資料-新版 1 1函數(shù)綜合測(cè)試題02 精編數(shù)學(xué)高考復(fù)習(xí)資料9、已知函數(shù)為偶函數(shù),且(1)求的值,并確定的解析式;(2)若,在上為增函數(shù),求實(shí)數(shù)的取值范圍。解:(1)由,又當(dāng)為奇函數(shù),不合題意,舍去;當(dāng)為偶函數(shù),滿(mǎn)足題設(shè),故。 精編數(shù)學(xué)高考復(fù)習(xí)資料(2)令,若在其定義域內(nèi)單調(diào)遞減,要使上單調(diào)遞增,則需上遞減,且,即,若在其定義域內(nèi)單調(diào)遞增,要使上單調(diào)遞增,則需上遞增,且,即; 綜上所述,實(shí)數(shù)的取值范圍是。 10、對(duì)定義在上,并且同時(shí)滿(mǎn)足以下兩個(gè)條件的函數(shù)稱(chēng)為函數(shù),對(duì)任意的,總有;當(dāng)時(shí),總有成立;已知函數(shù)與是定義在上的函數(shù)。(1)試問(wèn)函數(shù)是否為函數(shù)?并說(shuō)明理由;(2)若函數(shù)是函數(shù),求實(shí)數(shù)組成的集合。解:(1)當(dāng)時(shí),總有,滿(mǎn)足,當(dāng)時(shí),滿(mǎn)足;(2)為增函數(shù),;由,得,即;因?yàn)?,所以,與不同時(shí)等于1 ,當(dāng)時(shí),綜合,。11、已知函數(shù)。(1)將的圖象向右平移兩個(gè)單位,得到函數(shù),求函數(shù)的解析式;(2)函數(shù)與函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),求函數(shù)的解析式;(3)設(shè),已知的最小值是且,求實(shí)數(shù)的取值范圍。解:(1)(2)設(shè)的圖象上一點(diǎn),點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)為, 精編數(shù)學(xué)高考復(fù)習(xí)資料由點(diǎn)在的圖象上,所以,于是即(3);設(shè),則; 精編數(shù)學(xué)高考復(fù)習(xí)資料問(wèn)題轉(zhuǎn)化為:,對(duì)恒成立,即:,對(duì)恒成立。(*)故必有(否則,若,則關(guān)于的二次函數(shù)開(kāi)口向下,當(dāng)充分大時(shí),必有;而當(dāng)時(shí),顯然不能保證(*)成立),此時(shí),由于二次函數(shù)的對(duì)稱(chēng)軸方程為,所以,問(wèn)題等價(jià)于,即,解之得:;此時(shí),故在取得最小值滿(mǎn)足條件。點(diǎn)評(píng):緊扣二次函數(shù)的頂點(diǎn)式對(duì)稱(chēng)軸、最值、判別式顯合力。12、對(duì)于在區(qū)間上有意義的兩個(gè)函數(shù)與,如果對(duì)任意的,均有 精編數(shù)學(xué)高考復(fù)習(xí)資料,則稱(chēng)與在上是接近的,否則稱(chēng)與在上是非接近的,現(xiàn)有兩個(gè)函數(shù)與,給定區(qū)間。(1)若與在給定區(qū)間上都有意義,求實(shí)數(shù)的取值范圍;(2)討論與在給定區(qū)間上是否是接近的。解:(1)兩個(gè)函數(shù)與在給定的一個(gè)區(qū)間有意義,函數(shù)在給定區(qū)間上單調(diào)遞增,函數(shù)在給定區(qū)間上恒為正數(shù),故有意義,當(dāng)且僅當(dāng);(2)構(gòu)造函數(shù),對(duì)于函數(shù)來(lái)講, 顯然其在上單調(diào)遞減,在上單調(diào)遞增,且在其定義域內(nèi)一定是減函數(shù)。由于,得,所以原函數(shù)在區(qū)間內(nèi)單調(diào)遞減,只需保證 精編數(shù)學(xué)高考復(fù)習(xí)資料當(dāng)時(shí),與在區(qū)間上是接近的;當(dāng)時(shí),與在區(qū)間上是非接近的。