高三理科數(shù)學(xué) 新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練16 Word版含答案
專題能力訓(xùn)練16直線與圓能力突破訓(xùn)練1.(20xx內(nèi)蒙古包頭一模)已知圓E經(jīng)過三點(diǎn)A(0,1),B(2,0),C(0,-1),且圓心在x軸的正半軸上,則圓E的標(biāo)準(zhǔn)方程為()A.+y2=B.+y2=C.+y2=D.+y2=2.(20xx河南重點(diǎn)中學(xué)聯(lián)考)若直線x-2y-3=0與圓C:(x-2)2+(y+3)2=9交于E,F兩點(diǎn),則ECF的面積為()A.B.2C.D.3.已知直線y=kx+3與圓(x-1)2+(y+2)2=4相交于M,N兩點(diǎn),若|MN|2,則實(shí)數(shù)k的取值范圍是()A.B.C.D.4.已知實(shí)數(shù)a,b滿足a2+b2-4a+3=0,函數(shù)f(x)=asin x+bcos x+1的最大值記為(a,b),則(a,b)的最小值是()A.1B.2C.+1D.35.(20xx中原名校聯(lián)考)已知兩條直線l1:x+ay-1=0和l2:2a2x-y+1=0.若l1l2,則a=. 6.已知圓(x-a)2+(y-b)2=r2的圓心為拋物線y2=4x的焦點(diǎn),且直線3x+4y+2=0與該圓相切,則該圓的方程為. 7.已知圓C的圓心與拋物線y2=4x的焦點(diǎn)F關(guān)于直線y=x對稱,直線4x-3y-2=0與圓C相交于A,B兩點(diǎn),且|AB|=6,則圓C的方程為. 8.已知P是拋物線y2=4x上的動(dòng)點(diǎn),過點(diǎn)P作拋物線準(zhǔn)線的垂線,垂足為點(diǎn)M,N是圓(x-2)2+(y-5)2=1上的動(dòng)點(diǎn),則|PM|+|PN|的最小值是. 9.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線x-y=4相切.(1)求圓O的方程;(2)若圓O上有兩點(diǎn)M,N關(guān)于直線x+2y=0對稱,且|MN|=2,求直線MN的方程;(3)設(shè)圓O與x軸相交于A,B兩點(diǎn),若圓內(nèi)的動(dòng)點(diǎn)P使|PA|,|PO|,|PB|成等比數(shù)列,求的取值范圍.10.已知圓O:x2+y2=4,點(diǎn)A(,0),以線段AB為直徑的圓內(nèi)切于圓O,記點(diǎn)B的軌跡為.(1)求曲線的方程;(2)直線AB交圓O于C,D兩點(diǎn),當(dāng)B為CD的中點(diǎn)時(shí),求直線AB的方程.11.已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).(1)求k的取值范圍;(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.思維提升訓(xùn)練12.(20xx全國,理12)在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若=+,則+的最大值為()A.3B.2C.D.213.已知點(diǎn)A(-1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將ABC分割為面積相等的兩部分,則b的取值范圍是()A.(0,1)B.C.D.14.(20xx江蘇,13)在平面直角坐標(biāo)系xOy中,A(-12,0),B(0,6),點(diǎn)P在圓O:x2+y2=50上.若20,則點(diǎn)P的橫坐標(biāo)的取值范圍是. 15.已知直線l:mx+y+3m-=0與圓x2+y2=12交于A,B兩點(diǎn),過A,B分別作l的垂線與x軸交于C,D兩點(diǎn).若|AB|=2,則|CD|=. 16.如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,求直線l的方程;(3)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得,求實(shí)數(shù)t的取值范圍.17.已知以點(diǎn)C(tR,t0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).(1)求證:AOB的面積為定值;(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).參考答案專題能力訓(xùn)練16直線與圓能力突破訓(xùn)練1.C解析用排除法,因?yàn)閳A心在x軸的正半軸上,排除B;代入點(diǎn)A(0,1),排除A,D.故選C.2.B解析由題意,圓心為C(2,-3),半徑為r=3,則ECF的高h(yuǎn)=d=,底邊長為l=2=2=4,所以SECF=4=2,故選B.3.B解析當(dāng)|MN|=2時(shí),在弦心距、半徑和半弦長構(gòu)成的直角三角形中,可知圓心(1,-2)到直線y=kx+3的距離為=1,即=1,解得k=-若使|MN|2,則k-4.B解析由題意知(a,b)=+1,且(a,b)滿足a2+b2-4a+3=0,即(a,b)在圓C:(a-2)2+b2=1上,圓C的圓心為(2,0),半徑為1,表示圓C上的動(dòng)點(diǎn)(a,b)到原點(diǎn)的距離,最小值為1,所以(a,b)的最小值為2.故選B.5.0或解析當(dāng)a=0時(shí),l1l2,當(dāng)a0時(shí),由-2a2=-1,解得a=,所以a=0或a=6.(x-1)2+y2=1解析因?yàn)閽佄锞€y2=4x的焦點(diǎn)坐標(biāo)為(1,0),所以a=1,b=0.又根據(jù)=1=r,所以圓的方程為(x-1)2+y2=1.7.x2+(y-1)2=10解析拋物線y2=4x的焦點(diǎn)F(1,0)關(guān)于直線y=x的對稱點(diǎn)C(0,1)是圓心,C到直線4x-3y-2=0的距離d=1.圓截直線4x-3y-2=0的弦長為6,圓的半徑r=圓方程為x2+(y-1)2=10.8-1解析拋物線y2=4x的焦點(diǎn)為F(1,0),圓(x-2)2+(y-5)2=1的圓心為C(2,5),根據(jù)拋物線的定義可知點(diǎn)P到準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)的距離,進(jìn)而推斷出當(dāng)P,C,F三點(diǎn)共線時(shí),點(diǎn)P到點(diǎn)C的距離與點(diǎn)P到拋物線的焦點(diǎn)距離之和的最小值為|FC|=,故|PM|+|PN|的最小值是|FC|-1=-1.9.解(1)依題意,圓O的半徑r等于原點(diǎn)O到直線x-y=4的距離,即r=2.所以圓O的方程為x2+y2=4.(2)由題意,可設(shè)直線MN的方程為2x-y+m=0.則圓心O到直線MN的距離d=由垂徑定理,得+()2=22,即m=±所以直線MN的方程為2x-y+=0或2x-y-=0.(3)設(shè)P(x,y),由題意得A(-2,0),B(2,0).由|PA|,|PO|,|PB|成等比數(shù)列,得=x2+y2,即x2-y2=2.因?yàn)?(-2-x,-y)·(2-x,-y)=2(y2-1),且點(diǎn)P在圓O內(nèi),所以由此得0y2<1.所以的取值范圍為-2,0).10.解(1)設(shè)AB的中點(diǎn)為M,切點(diǎn)為N,連接OM,MN,則|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+|AB|,即|AB|+2|OM|=4.取點(diǎn)A關(guān)于y軸的對稱點(diǎn)A',連接A'B,則|A'B|=2|OM|,所以|AB|+2|OM|=|AB|+|A'B|=4>|A'A|.所以點(diǎn)B的軌跡是以A',A為焦點(diǎn),長軸長為4的橢圓.其中,a=2,c=,b=1,故曲線的方程為+y2=1.(2)因?yàn)锽為CD的中點(diǎn),所以O(shè)BCD,則設(shè)B(x0,y0),則x0(x0-)+=0.又=1,解得x0=,y0=±則kOB=±,kAB=,則直線AB的方程為y=±(x-),即x-y-=0或x+y-=0.11.解(1)由題設(shè),可知直線l的方程為y=kx+1.因?yàn)閘與C交于兩點(diǎn),所以<1.解得<k<所以k的取值范圍為(2)設(shè)M(x1,y1),N(x2,y2).將y=kx+1代入方程(x-2)2+(y-3)2=1,整理得(1+k2)x2-4(1+k)x+7=0.所以x1+x2=,x1x2=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=+8.由題設(shè)可得+8=12,解得k=1,所以l的方程為y=x+1.故圓心C在l上,所以|MN|=2.思維提升訓(xùn)練12.A解析建立如圖所示的平面直角坐標(biāo)系,則A(0,1),B(0,0),D(2,1).設(shè)P(x,y),由|BC|·|CD|=|BD|·r,得r=,即圓的方程是(x-2)2+y2=易知=(x,y-1),=(0,-1),=(2,0).由=+,得所以=,=1-y,所以+=x-y+1.設(shè)z=x-y+1,即x-y+1-z=0.因?yàn)辄c(diǎn)P(x,y)在圓(x-2)2+y2=上,所以圓心C到直線x-y+1-z=0的距離dr,即,解得1z3,所以z的最大值是3,即+的最大值是3,故選A.13.B解析由題意可得,ABC的面積為S=AB·OC=1,由于直線y=ax+b(a>0)與x軸的交點(diǎn)為M,由-0可得點(diǎn)M在射線OA上.設(shè)直線和BC的交點(diǎn)為N,又直線BC的方程為x+y=1,則由可得點(diǎn)N的坐標(biāo)為若點(diǎn)M和點(diǎn)A重合,則點(diǎn)N為線段BC的中點(diǎn),則-=-1,且,解得a=b=若點(diǎn)M在點(diǎn)O和點(diǎn)A之間,則點(diǎn)N在點(diǎn)B和點(diǎn)C之間,由題意可得NMB的面積等于,即|MB|·yN=,即,解得a=>0,則b<若點(diǎn)M在點(diǎn)A的左側(cè),則-<-1,b>a,設(shè)直線y=ax+b和AC的交點(diǎn)為P,則由求得點(diǎn)P的坐標(biāo)為,此時(shí),NP=,此時(shí),點(diǎn)C(0,1)到直線y=ax+b的距離為,由題意可得,CPN的面積等于,即,化簡,得2(1-b)2=|a2-1|.由于此時(shí)0<a<1,2(1-b)2=|a2-1|=1-a2.兩邊開方可得(1-b)=<1,則1-b<,即b>1-,綜合以上可得,b=符合題意,且b<,b>1-,即b的取值范圍是14.-5,1解析設(shè)P(x,y),由20,易得x2+y2+12x-6y20.把x2+y2=50代入x2+y2+12x-6y20得2x-y+50.由可得由2x-y+50表示的平面區(qū)域及P點(diǎn)在圓上,可得點(diǎn)P在圓弧EPF上,所以點(diǎn)P橫坐標(biāo)的取值范圍為-5,1.15.4解析因?yàn)閨AB|=2,且圓的半徑R=2,所以圓心(0,0)到直線mx+y+3m-=0的距離為=3.由=3,解得m=-將其代入直線l的方程,得y=x+2,即直線l的傾斜角為30°.由平面幾何知識(shí)知在梯形ABDC中,|CD|=4.16.解圓M的標(biāo)準(zhǔn)方程為(x-6)2+(y-7)2=25,所以圓心M(6,7),半徑為5.(1)由圓心N在直線x=6上,可設(shè)N(6,y0).因?yàn)閳AN與x軸相切,與圓M外切,所以0<y0<7,于是圓N的半徑為y0,從而7-y0=5+y0,解得y0=1.因此,圓N的標(biāo)準(zhǔn)方程為(x-6)2+(y-1)2=1.(2)因?yàn)橹本€lOA,所以直線l的斜率為=2.設(shè)直線l的方程為y=2x+m,即2x-y+m=0,則圓心M到直線l的距離d=因?yàn)锽C=OA=2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直線l的方程為2x-y+5=0或2x-y-15=0.(3)設(shè)P(x1,y1),Q(x2,y2).因?yàn)锳(2,4),T(t,0),所以因?yàn)辄c(diǎn)Q在圓M上,所以(x2-6)2+(y2-7)2=25.將代入,得(x1-t-4)2+(y1-3)2=25.于是點(diǎn)P(x1,y1)既在圓M上,又在圓x-(t+4)2+(y-3)2=25上,從而圓(x-6)2+(y-7)2=25與圓x-(t+4)2+(y-3)2=25有公共點(diǎn),所以5-55+5,解得2-2t2+2因此,實(shí)數(shù)t的取值范圍是2-2,2+2.17.(1)證明由題設(shè)知,圓C的方程為(x-t)2+=t2+,化簡,得x2-2tx+y2-y=0.當(dāng)y=0時(shí),x=0或2t,則A(2t,0);當(dāng)x=0時(shí),y=0或,則B,故SAOB=|OA|·|OB|=|2t|=4為定值.(2)解|OM|=|ON|,原點(diǎn)O在MN的中垂線上.設(shè)MN的中點(diǎn)為H,則CHMN,C,H,O三點(diǎn)共線,則直線OC的斜率k=,t=2或t=-2.圓心為C(2,1)或(-2,-1),圓C的方程為(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5.由于當(dāng)圓的方程為(x+2)2+(y+1)2=5時(shí),直線2x+y-4=0到圓心的距離d>r,此時(shí)不滿足直線與圓相交,舍去,故圓C的方程為(x-2)2+(y-1)2=5.(3)解點(diǎn)B(0,2)關(guān)于直線x+y+2=0的對稱點(diǎn)為B'(-4,-2),則|PB|+|PQ|=|PB'|+|PQ|B'Q|.又點(diǎn)B'到圓上點(diǎn)Q的最短距離為|B'C|-r=3=2,所以|PB|+|PQ|的最小值為2,直線B'C的方程為y=x,則直線B'C與直線x+y+2=0的交點(diǎn)P的坐標(biāo)為