創(chuàng)新方案高考人教版數(shù)學(xué)理總復(fù)習(xí)練習(xí):第五章 數(shù)列 課時(shí)作業(yè)30 Word版含解析
第五章數(shù)列課時(shí)作業(yè)30數(shù)列的概念與簡(jiǎn)單表示法1(2019·青島模擬)數(shù)列1,3,6,10,15,的一個(gè)通項(xiàng)公式是(C)Aann2(n1) Bann21Can Dan解析:設(shè)此數(shù)列為an,則由題意可得a11,a23,a36,a410,a515,仔細(xì)觀察數(shù)列1,3,6,10,15,可以發(fā)現(xiàn):11,312,6123,101234,所以第n項(xiàng)為12345n,所以數(shù)列1,3,6,10,15,的通項(xiàng)公式為an.2(2019·長(zhǎng)沙模擬)已知數(shù)列的前4項(xiàng)為2,0,2,0,則依此歸納該數(shù)列的通項(xiàng)不可能是(C)Aan(1)n11 BanCan2sin Dancos(n1)1解析:對(duì)n1,2,3,4進(jìn)行驗(yàn)證,an2sin不合題意3(2019·廣東茂名模擬)Sn是數(shù)列an的前n項(xiàng)和,且nN*都有2Sn3an4,則Sn(A)A22×3n B4×3nC4×3n1 D22×3n1解析:2Sn3an4,2Sn3(SnSn1)4(n2),變形為Sn23(Sn12),又n1時(shí),2S13S14,解得S14,S126.數(shù)列Sn2是等比數(shù)列,首項(xiàng)為6,公比為3.Sn26×3n1,可得Sn22×3n,故選A.4(2019·河北石家莊一模)若數(shù)列an滿足a12,an1,則a2 018的值為(B)A2 B3C D.解析:a12,an1,a23,同理可得:a3,a4,a52,可得an4an,則a2 018a504×42a23.故選B.5(2019·廣東廣州一模)已知數(shù)列an滿足a12,2anan1a1,設(shè)bn,則數(shù)列bn是(D)A常數(shù)列 B擺動(dòng)數(shù)列C遞增數(shù)列 D遞減數(shù)列解析:2anan1a1,an1,bn,bn1b,bn1bnbbnbn(bn1),a12,b1,b22,b324,b428,數(shù)列bn是遞減數(shù)列,故選D.6在數(shù)列an中,a11,a22,若an22an1an2,則an(C)A.n2n Bn35n29n4Cn22n2 D2n25n4解析:由題意得(an2an1)(an1an)2,因此數(shù)列an1an是以1為首項(xiàng),2為公差的等差數(shù)列,an1an12(n1)2n1,當(dāng)n2時(shí),ana1(a2a1)(a3a2)(anan1)113(2n3)1(n1)21n22n2,又a11122×12,因此ann22n2(nN*),故選C.7(2019·河北保定一模)已知函數(shù)f(x)若數(shù)列an滿足anf(n)(nN*),且an是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是(C)A(1,3) B(1,2C(2,3) D.解析:數(shù)列an是遞增數(shù)列,f(x)anf(n)(nN*),3a0,a1且f(10)f(11),1a3且10(3a)6a2,解得2a3,故實(shí)數(shù)a的取值范圍是(2,3),故選C.8已知數(shù)列an滿足an1an2n,且a133,則的最小值為(C)A21 B10C. D.解析:由已知條件可知,當(dāng)n2時(shí),ana1(a2a1)(a3a2)(anan1)33242(n1)n2n33,又n1時(shí),a133滿足此式所以n1.令f(n)n1,則f(n)在1,5上為減函數(shù),在6,)上為增函數(shù)又f(5),f(6),則f(5)f(6),故f(n)的最小值為.9在一個(gè)數(shù)列中,如果nN*,都有anan1an2k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積已知數(shù)列an是等積數(shù)列,且a11,a22,公積為8,則a1a2a3a1228_.解析:依題意得數(shù)列an是周期為3的數(shù)列,且a11,a22,a34,因此a1a2a3a124(a1a2a3)4×(124)28.10(2019·成都質(zhì)檢)在數(shù)列an中,a11,anan1(n2,nN*),則an.解析:由題意知.所以ana1××××1××××.11數(shù)列an的通項(xiàng)公式為an(2n1)n1,則數(shù)列an的最大項(xiàng)為.解析:an1an(2n3)n1(2n1)nnnn.因?yàn)閚1,所以n0,n0,所以an1an0,所以an1an,所以a1a2a3anan1,所以數(shù)列an的最大項(xiàng)為a1.12(2019·山東青島調(diào)研)已知Sn是數(shù)列an的前n項(xiàng)和,Sn3×2n3,其中nN*.(1)求數(shù)列an的通項(xiàng)公式;(2)數(shù)列bn為等差數(shù)列,Tn為其前n項(xiàng)和,b2a5,b11S3,求Tn的最值解:(1)由Sn3×2n3,nN*得,()當(dāng)n1時(shí),a1S13×2133.()當(dāng)n2時(shí),anSnSn1(3×2n3)(3×2n13)3×(2n2n1)3×2n1(*)又當(dāng)n1時(shí),a13也滿足(*)式所以,對(duì)任意nN*,都有an3×2n1.(2)設(shè)等差數(shù)列bn的首項(xiàng)為b1,公差為d,由(1)得b2a53×25148,b11S33×23321.由等差數(shù)列的通項(xiàng)公式得解得所以bn543n.可以看出bn隨著n的增大而減小,令bn0,解得n18,所以Tn有最大值,無最小值,且T18(或T17)為前n項(xiàng)和Tn的最大值,T189×(510)459.13(2019·黃岡質(zhì)檢)已知數(shù)列xn滿足xn2|xn1xn|(nN*),若x11,x2a(a1,a0),且xn3xn對(duì)于任意的正整數(shù)n均成立,則數(shù)列xn的前2 017項(xiàng)和S2 017(D)A672 B673C1 342 D1 345解析:x11,x2a(a1,a0),x3|x2x1|a1|1a,x1x2x31a(1a)2,又xn3xn對(duì)于任意的正整數(shù)n均成立,數(shù)列xn的周期為3,所以數(shù)列xn的前2 017項(xiàng)和S2 017S672×31672×211 345.故選D.14(2019·河南鄭州一中模擬)數(shù)列an滿足:a11,且對(duì)任意的m,nN*,都有amnamanmn,則(D)A. B.C. D.解析:a11,且對(duì)任意的m,nN*都有amnamanmn,an1ann1,即an1ann1,用累加法可得ana1,2,2,故選D.15設(shè)an是首項(xiàng)為1的正項(xiàng)數(shù)列,且(n1)anaan1·an0(n1,2,3,),則它的通項(xiàng)公式an.解析:因?yàn)?n1)anaan1·an0,所以(an1an)(n1)an1nan0,又因?yàn)閍n0,故(n1)an1nan0,即,故,把以上各式分別相乘得,即an.16(2019·寶安中學(xué)等七校聯(lián)考)已知an是遞增數(shù)列,其前n項(xiàng)和為Sn,a11,且10Sn(2an1)(an2),nN*.(1)求數(shù)列an的通項(xiàng)an;(2)是否存在m,n,kN*,使得2(aman)ak成立?若存在,寫出一組符合條件的m,n,k的值;若不存在,請(qǐng)說明理由解:(1)由10a1(2a11)(a12),得2a5a120,解得a12或a1.又a11,所以a12.因?yàn)?0Sn(2an1)(an2),所以10Sn2a5an2.故10an110Sn110Sn2a5an122a5an2,整理,得2(aa)5(an1an)0,即(an1an)2(an1an)50.因?yàn)閍n是遞增數(shù)列且a12,所以an1an0,因此an1an.所以數(shù)列an是以2為首項(xiàng),為公差的等差數(shù)列所以an2(n1)(5n1)(2)滿足條件的正整數(shù)m,n,k不存在,理由如下:假設(shè)存在m,n,kN*,使得2(aman)ak,則5m15n1(5k1),整理,得2m2nk,(*)顯然,(*)式左邊為整數(shù),所以(*)式不成立故滿足條件的正整數(shù)m,n,k不存在