歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

專題三 第2講 三角變換與解三角形

  • 資源ID:77555726       資源大?。?span id="waq4awg" class="font-tahoma">300.50KB        全文頁數(shù):16頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

專題三 第2講 三角變換與解三角形

第2講三角變換與解三角形考情解讀1.高考中常考查三角恒等變換有關(guān)公式的變形使用,常和同角三角函數(shù)的關(guān)系、誘導(dǎo)公式結(jié)合.2.利用正弦定理或余弦定理解三角形或判斷三角形的形狀、求值等,經(jīng)常和三角恒等變換結(jié)合進(jìn)行綜合考查1兩角和與差的正弦、余弦、正切公式(1)sin(±)sin cos ±cos sin .(2)cos(±)cos cos sin sin .(3)tan(±).2二倍角的正弦、余弦、正切公式(1)sin 22sin cos .(2)cos 2cos2sin22cos2112sin2.(3)tan 2.3三角恒等式的證明方法(1)從等式的一邊推導(dǎo)變形到另一邊,一般是化繁為簡(2)等式的兩邊同時變形為同一個式子(3)將式子變形后再證明4正弦定理2R(2R為ABC外接圓的直徑)變形:a2Rsin A,b2Rsin B,c2Rsin C.sin A,sin B,sin C.abcsin Asin Bsin C.5余弦定理a2b2c22bccos A,b2a2c22accos B,c2a2b22abcos C.推論:cos A,cos B,cos C.變形:b2c2a22bccos A,a2c2b22accos B,a2b2c22abcos C.6面積公式SABCbcsin Aacsin Babsin C.7解三角形(1)已知兩角及一邊,利用正弦定理求解(2)已知兩邊及一邊的對角,利用正弦定理或余弦定理求解,解的情況可能不唯一(3)已知兩邊及其夾角,利用余弦定理求解(4)已知三邊,利用余弦定理求解熱點一三角變換例1(1)已知sin()sin ,<<0,則cos()等于()A BC. D.(2)(2014·課標(biāo)全國)設(shè)(0,),(0,),且tan ,則()A3 B2C3 D2思維啟迪(1)利用和角公式化簡已知式子,和cos()進(jìn)行比較(2)先對已知式子進(jìn)行變形,得三角函數(shù)值的式子,再利用范圍探求角的關(guān)系答案(1)C(2)B解析(1)sin()sin ,<<0,sin cos ,sin cos ,cos()cos cossin sincos sin .(2)由tan 得,即sin cos cos cos sin ,sin()cos sin()(0,),(0,),(,),(0,),由sin()sin(),得,2.思維升華(1)三角變換的關(guān)鍵在于對兩角和與差的正弦、余弦、正切公式,二倍角公式,三角恒等變換公式的熟記和靈活應(yīng)用,要善于觀察各個角之間的聯(lián)系,發(fā)現(xiàn)題目所給條件與恒等變換公式的聯(lián)系,公式的使用過程要注意正確性,要特別注意公式中的符號和函數(shù)名的變換,防止出現(xiàn)張冠李戴的情況(2)求角問題要注意角的范圍,要根據(jù)已知條件將所求角的范圍盡量縮小,避免產(chǎn)生增解設(shè)函數(shù)f(x)cos(2x)sin2x.(1)求函數(shù)f(x)的最小正周期和最大值;(2)若是第二象限角,且f()0,求的值解(1)f(x)cos(2x)sin2xcos 2xcossin 2xsinsin 2x.所以f(x)的最小正周期為T,最大值為.(2)因為f()0,所以sin 0,即sin ,又是第二象限角,所以cos .所以.熱點二解三角形例2在ABC中,角A,B,C所對的邊分別為a,b,c,滿足a2sin A,0.(1)求邊c的大??;(2)求ABC面積的最大值思維啟迪(1)將0中的邊化成角,然后利用和差公式求cos C,進(jìn)而求c.(2)只需求ab的最大值,可利用cos C和基本不等式求解解(1)0,ccos B2acos Cbcos C0,sin Ccos Bsin Bcos C2sin Acos C0,sin A2sin Acos C0,sin A0,cos C,C(0,)C,c·sin C.(2)cos C,a2b2ab3,3ab3,即ab1.SABCabsin C.ABC的面積最大值為.思維升華三角形問題的求解一般是從兩個角度,即從“角”或從“邊”進(jìn)行轉(zhuǎn)化突破,實現(xiàn)“邊”或“角”的統(tǒng)一,問題便可突破幾種常見變形:(1)abcsin Asin Bsin C;(2)a2Rsin A,b2Rsin B,c2Rsin C,其中R為ABC外接圓的半徑;(3)sin(AB)sin C,cos(AB)cos C.(1)ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,asin Asin Bbcos2Aa,則等于()A. B2C. D2(2)(2014·江西)在ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.若c2(ab)26,C,則ABC的面積是()A3 B.C. D3答案(1)A(2)C解析(1)因為asin Asin Bbcos2Aa,由正弦定理得sin2Asin Bsin Bcos2Asin A,即sin Bsin A,即,.(2)c2(ab)26,c2a2b22ab6.C,c2a2b22abcos a2b2ab.由得ab6.SABCabsin C×6×.熱點三正、余弦定理的實際應(yīng)用例3(2013·江蘇)如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min.在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設(shè)纜車勻速直線運動的速度為130 m/min,山路AC長為1 260 m,經(jīng)測量cos A,cos C.(1)求索道AB的長;(2)問:乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?(3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?思維啟迪(1)直接求sin B,利用正弦定理求AB.(2)利用余弦定理和函數(shù)思想,將甲乙距離表示為乙出發(fā)后時間t的函數(shù)解(1)在ABC中,因為cos A,cos C,所以sin A,sin C.從而sin Bsin(AC)sin(AC)sin Acos Ccos Asin C××.由正弦定理,得AB×sin C×1 040(m)所以索道AB的長為1 040 m.(2)假設(shè)乙出發(fā)t分鐘后,甲、乙兩游客距離為d,此時,甲行走了(10050t)m,乙距離A處130t m,所以由余弦定理得d2(10050t)2(130t)22×130t×(10050t)×200(37t270t50),由于0t,即0t8,故當(dāng)t min時,甲、乙兩游客距離最短(3)由正弦定理,得BC×sin A×500(m)乙從B出發(fā)時,甲已走了50×(281)550(m),還需走710 m才能到達(dá)C.設(shè)乙步行的速度為v m/min,由題意得33,解得v,所以為使兩位游客在C處互相等待的時間不超過3 min,乙步行的速度應(yīng)控制在(單位:m/min)范圍內(nèi)思維升華求解三角形的實際問題,首先要準(zhǔn)確理解題意,分清已知與所求,關(guān)注應(yīng)用題中的有關(guān)專業(yè)名詞、術(shù)語,如方位角、俯角等;其次根據(jù)題意畫出其示意圖,示意圖起著關(guān)鍵的作用;再次將要求解的問題歸結(jié)到一個或幾個三角形中,通過合理運用正、余弦定理等有關(guān)知識建立數(shù)學(xué)模型,從而正確求解,演算過程要簡練,計算要準(zhǔn)確;最后作答如圖,中國漁民在中國南海黃巖島附近捕魚作業(yè),中國海監(jiān)船在A地偵察發(fā)現(xiàn),在南偏東60°方向的B地,有一艘某國軍艦正以每小時13海里的速度向正西方向的C地行駛,企圖抓捕正在C地捕魚的中國漁民此時,C地位于中國海監(jiān)船的南偏東45°方向的10海里處,中國海監(jiān)船以每小時30海里的速度趕往C地救援我國漁民,能不能及時趕到?(1.41,1.73,2.45)解過點A作ADBC,交BC的延長線于點D.因為CAD45°,AC10海里,所以ACD是等腰直角三角形所以ADCDAC×105(海里)在RtABD中,因為DAB60°,所以BDAD×tan 60°5×5(海里)所以BCBDCD(55)(海里)因為中國海監(jiān)船以每小時30海里的速度航行,某國軍艦正以每小時13海里的速度航行,所以中國海監(jiān)船到達(dá)C點所用的時間t1(小時),某國軍艦到達(dá)C點所用的時間t20.4(小時)因為<0.4,所以中國海監(jiān)船能及時趕到1求解恒等變換問題的基本思路一角二名三結(jié)構(gòu),即用化歸轉(zhuǎn)化思想“去異求同”的過程,具體分析如下:(1)首先觀察角與角之間的關(guān)系,注意角的一些常用變換形式,角的變換是三角函數(shù)變換的核心(2)其次看函數(shù)名稱之間的關(guān)系,通?!扒谢摇?3)再次觀察代數(shù)式的結(jié)構(gòu)特點2解三角形的兩個關(guān)鍵點(1)正、余弦定理是實現(xiàn)三角形中邊角互化的依據(jù),注意定理的靈活變形,如a2Rsin A,sin A(其中2R為三角形外接圓的直徑),a2b2c22abcos C等,靈活根據(jù)條件求解三角形中的邊與角(2)三角形的有關(guān)性質(zhì)在解三角形問題中起著重要的作用,如利用“三角形的內(nèi)角和等于”和誘導(dǎo)公式可得到sin(AB)sin C,sin cos 等,利用“大邊對大角”可以解決解三角形中的增解問題等3利用正弦定理、余弦定理解決實際問題的關(guān)鍵是如何將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,抽象出三角形模型真題感悟1(2013·浙江)已知R,sin 2cos ,則tan 2等于()A. B. C D答案C解析sin 2cos ,sin24sin ·cos 4cos2.用降冪公式化簡得:4sin 23cos 2,tan 2.故選C.2(2014·江蘇)若ABC的內(nèi)角滿足sin Asin B2sin C,則cos C的最小值是_答案解析由sin Asin B2sin C,結(jié)合正弦定理得ab2c.由余弦定理得cos C,故cos C<1,且3a22b2時取“”故cos C的最小值為.押題精練1在ABC中,已知tan sin C,給出以下四個結(jié)論:1;1<sin Asin B;sin2Acos2B1;cos2Acos2Bsin2C.其中一定正確的是()A B C D答案D解析依題意,tan sin C.sin C0,1cos(AB)1,cos(AB)0.0<AB<,AB,即ABC是以角C為直角的直角三角形對于,由1,得tan Atan B,即AB,不一定成立,故不正確;對于,AB,sin Asin Bsin Acos Asin(A),1<sin Asin B,故正確;對于,AB,sin2Acos2Bsin2Asin2A2sin2A,其值不確定,故不正確;對于,AB,cos2Acos2Bcos2Asin2A1sin2C,故正確2在ABC中,角A,B,C所對的邊分別為a,b,c,q(2a,1),p(2bc,cos C),且qp.(1)求sin A的值;(2)求三角函數(shù)式1的取值范圍解(1)q(2a,1),p(2bc,cos C)且qp,2bc2acos C,由正弦定理得2sin Acos C2sin Bsin C,又sin Bsin(AC)sin Acos Ccos Asin C,sin Ccos Asin C.sin C0,cos A,又0<A<,A,sin A.(2)原式1112cos2C2sin Ccos Csin 2Ccos 2Csin(2C),0<C<,<2C<,<sin(2C)1,1<sin(2C),即三角函數(shù)式1的取值范圍為(1,(推薦時間:60分鐘)一、選擇題1(2014·浙江)為了得到函數(shù)ysin 3xcos 3x的圖象,可以將函數(shù)ycos 3x的圖象()A向右平移個單位 B向左平移個單位C向右平移個單位 D向左平移個單位答案C解析因為ysin 3xcos 3xsin(3x)sin3(x),又ycos 3xsin(3x)sin3(x),所以應(yīng)由ycos 3x的圖象向右平移個單位得到2已知(,),sin(),則cos 等于()A B.C或 D答案A解析(,)(,)sin(),cos(),cos cos()cossin()sin()××.3在ABC中,若3,b2a2ac,則cos B的值為()A. B.C. D.答案D解析由正弦定理:3,由余弦定理:cos B×.4(2013·陜西)設(shè)ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcos Cccos Basin A,則ABC的形狀為()A銳角三角形 B直角三角形C鈍角三角形 D不確定答案B解析由bcos Cccos Basin A,得sin Bcos Csin Ccos Bsin2A,即sin(BC)sin2A,所以sin A1,由0<A<,得A,所以ABC為直角三角形5已知tan ,sin(),其中,(0,),則sin 的值為()A. B.C. D.或答案A解析依題意得sin ,cos .注意到sin()<sin ,因此有>(否則,若,則有0<<,0<sin <sin(),這與“sin()<sin ”矛盾),則cos(),sin sin()sin()cos cos()sin .6已知ABC中,角A、B、C的對邊分別是a、b、c,且tan B,·,則tan B等于()A. B.1C2 D2答案D解析由題意得,·|·|cos Baccos B,即cos B,由余弦定理,得cos Ba2c2b21,所以tan B2,故選D.二、填空題7已知tan,且<<0,則_.答案解析由tan,得tan .又<<0,可得sin .故2sin .8在ABC中,內(nèi)角A、B、C的對邊長分別為a、b、c,已知a2c22b,且sin Acos C3cos Asin C,則b_.答案4解析由sin Acos C3cos Asin C得:·3··,a2b2c23(b2c2a2),a2c2,解方程組:,b4.9已知0<<<<,cos(),sin(),則cos()_.答案解析因為0<<<<,所以<<,<<.所以sin()>0,cos()<0.因為cos(),sin(),所以sin(),cos().所以cos()cos()()cos()cos()sin()sin()××.10如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC,小李在山腳B處看索道AC,發(fā)現(xiàn)張角ABC120°;從B處攀登400米到達(dá)D處,回頭看索道AC,發(fā)現(xiàn)張角ADC150°;從D處再攀登800米方到達(dá)C處,則索道AC的長為_米答案400解析如題圖,在ABD中,BD400米,ABD120°.因為ADC150°,所以ADB30°.所以DAB180°120°30°30°.由正弦定理,可得.所以,得AD400(米)在ADC中,DC800米,ADC150°,由余弦定理,可得AC2AD2CD22×AD×CD×cosADC(400)280022×400×800×cos 150°4002×13,解得AC400(米)故索道AC的長為400米三、解答題11(2014·安徽)設(shè)ABC的內(nèi)角A,B,C所對邊的長分別是a,b,c,且b3,c1,A2B.(1)求a的值;(2)求sin的值解(1)因為A2B,所以sin Asin 2B2sin Bcos B.由正、余弦定理得a2b·.因為b3,c1,所以a212,a2.(2)由余弦定理得cos A.由于0<A<,所以sin A.故sinsin Acos cos Asin××.12已知函數(shù)f(x)4cos x·sin(x)1(>0)的最小正周期是.(1)求f(x)的單調(diào)遞增區(qū)間;(2)求f(x)在,上的最大值和最小值解(1)f(x)4cos x·sin(x)12sin xcos x2cos2x1sin 2xcos 2x2sin(2x)最小正周期是,所以,1,從而f(x)2sin(2x)令2k2x2k,kZ.解得kxk,kZ.所以函數(shù)f(x)的單調(diào)遞增區(qū)間為k,k(kZ)(2)當(dāng)x,時,2x,f(x)2sin(2x),2,所以f(x)在,上的最大值和最小值分別為2,.13已知角A、B、C是ABC的三個內(nèi)角,若向量m(1cos(AB),cos),n(,cos),且m·n.(1)求tan Atan B的值;(2)求的最大值解(1)m·ncos(AB)cos2cos Acos Bsin Asin B,cos Acos B9sin Asin B得tan Atan B.(2)tan(AB)(tan Atan B)·2.(tan Atan B>0,A,B均是銳角,即其正切值均為正)tan Ctan(AB),所求最大值為.

注意事項

本文(專題三 第2講 三角變換與解三角形)為本站會員(無***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!