小升初奧數(shù)知識(shí)點(diǎn).doc
-
資源ID:9962256
資源大小:52KB
全文頁數(shù):11頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
小升初奧數(shù)知識(shí)點(diǎn).doc
小升初奧數(shù)知識(shí)點(diǎn)小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之一(速算與巧算)數(shù)列求和等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列?;靖拍睿菏醉?xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示; 數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示基本思路:等差數(shù)列中涉及五個(gè)量:a1 ,an, d, n, sn,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。基本公式:通項(xiàng)公式:an = a1+(n1)d;通項(xiàng)首項(xiàng)(項(xiàng)數(shù)一1) 公差;數(shù)列和公式:sn,= (a1+ an)n2;數(shù)列和(首項(xiàng)末項(xiàng))項(xiàng)數(shù)2;項(xiàng)數(shù)公式:n= (an+ a1)d1;項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))公差1;公差公式:d =(ana1)(n1);公差=(末項(xiàng)首項(xiàng))(項(xiàng)數(shù)1);關(guān)鍵問題:確定已知量和未知量,確定使用的公式小學(xué)奧數(shù)知識(shí)點(diǎn)匯編 大全之一(數(shù)列求和) 小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之一(數(shù)字謎) 分?jǐn)?shù)大小的比較基本方法:通分分子法:使所有分?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。通分分母法:使所有分?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較?;鶞?zhǔn)數(shù)法:確定一個(gè)標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。分子和分母大小比較法:當(dāng)分子和分母的差一定時(shí),分子或分母越大的分?jǐn)?shù)值越大。倍率比較法:當(dāng)比較兩個(gè)分子或分母同時(shí)變化時(shí)分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見同倍率變化規(guī)律)轉(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。倍數(shù)比較法:用一個(gè)數(shù)除以另一個(gè)數(shù),結(jié)果得數(shù)和1進(jìn)行比較。大小比較法:用一個(gè)分?jǐn)?shù)減去另一個(gè)分?jǐn)?shù),得出的數(shù)和0比較。倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小?;鶞?zhǔn)數(shù)比較法:確定一個(gè)基準(zhǔn)數(shù),每一個(gè)數(shù)與基準(zhǔn)數(shù)比較小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之一(比較和估算) 小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之一(數(shù)的拆分) 定義新運(yùn)算基本概念:定義一種新的運(yùn)算符號(hào),這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算?;舅悸罚簢?yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。關(guān)鍵問題:正確理解定義的運(yùn)算符號(hào)的意義。注意事項(xiàng):新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。每個(gè)新定義的運(yùn)算符號(hào)只能在本題中使用小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之一(定義新運(yùn)算) 小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之二 歸一問題的基本特點(diǎn):?jiǎn)栴}中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”等詞語來表示。關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一量;復(fù)合應(yīng)用題中的某些問題,解題時(shí)需先根據(jù)已知條件,求出一個(gè)單位量的數(shù)值,如單位面積的產(chǎn)量、單位時(shí)間的工作量、單位物品的價(jià)格、單位時(shí)間所行的距離等等,然后,再根據(jù)題中的條件和問題求出結(jié)果。這樣的應(yīng)用題就叫做歸一問題,這種解題方法叫做“歸一法”。有些歸一問題可以采取同類數(shù)量之間進(jìn)行倍數(shù)比較的方法進(jìn)行解答,這種方法叫做倍比法。由上所述,解答歸一問題的關(guān)鍵是求出單位量的數(shù)值,再根據(jù)題中“照這樣計(jì)算”、“用同樣的速度”等句子的含義,抓準(zhǔn)題中數(shù)量的對(duì)應(yīng)關(guān)系,列出算式,求得問題的解決。植樹問題基本類型:在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲線上植樹,兩端都不植樹在直線或者不封閉的曲線上植樹,只有一端植樹封閉曲線上植樹基本公式:棵數(shù)=段數(shù)1棵距段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)1棵距段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)棵距段數(shù)=總長(zhǎng)關(guān)鍵問題:確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系年齡問題的三大特征年齡問題:已知兩人的年齡,求若干年前或若干年后兩人年齡之間倍數(shù)關(guān)系的應(yīng)用題,叫做年齡問題。年齡問題的三個(gè)基本特征:兩個(gè)人的年齡差是不變的;兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;解題規(guī)律:抓住年齡差是個(gè)不變的數(shù)(常數(shù)),而倍數(shù)卻是每年都在變化的這個(gè)關(guān)鍵。例:父親今年54歲,兒子今年18歲,幾年前父親的年齡是兒子年齡的7倍? 父子年齡的差是多少?54 18 = 36(歲) 幾年前父親年齡比兒子年齡大幾倍?7 - 1 = 6 幾年前兒子多少歲?366 = 6(歲) 幾年前父親年齡是兒子年齡的7倍?18 6 = 12 (年)答:12年前父親的年齡是兒子年齡的7倍小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之二(年齡問題) 盈虧問題基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭炕舅悸罚合葘煞N分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量基本題型:基本題型:一次有余數(shù),另一次不足;基本公式:總份數(shù)(余數(shù)不足數(shù))兩次每份數(shù)的差當(dāng)兩次都有余數(shù);基本公式:總份數(shù)(較大余數(shù)一較小余數(shù))兩次每份數(shù)的差當(dāng)兩次都不足;基本公式:總份數(shù)(較大不足數(shù)一較小不足數(shù))兩次每份數(shù)的差基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。關(guān)鍵問題:確定對(duì)象總量和總的組數(shù)雞兔同籠問題基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯(cuò)的那部分置換出來;基本思路:假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差?;竟剑喊阉须u假設(shè)成兔子:雞數(shù)(兔腳數(shù)總頭數(shù)總腳數(shù))(兔腳數(shù)雞腳數(shù))把所有兔子假設(shè)成雞:兔數(shù)(總腳數(shù)一雞腳數(shù)總頭數(shù))(兔腳數(shù)一雞腳數(shù))關(guān)鍵問題:找出總量的差與單位量的差。平均數(shù)問題基本公式:平均數(shù)=總數(shù)量總份數(shù)總數(shù)量=平均數(shù)總份數(shù)總份數(shù)=總數(shù)量平均數(shù)平均數(shù)=基準(zhǔn)數(shù)每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和總份數(shù)基本算法:求出總數(shù)量以及總份數(shù),利用基本公式進(jìn)行計(jì)算.基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之二(平均數(shù)問題) 牛吃草問題基本思路:假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。基本特點(diǎn):原草量和新草生長(zhǎng)速度是不變的;關(guān)鍵問題:確定兩個(gè)不變的量?;竟剑荷L(zhǎng)量=(較長(zhǎng)時(shí)間長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間短時(shí)間牛頭數(shù))(長(zhǎng)時(shí)間-短時(shí)間);總草量=較長(zhǎng)時(shí)間長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間生長(zhǎng)量小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之二(牛吃草問題)分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用基本概念與性質(zhì):分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。常用方法:逆向思維方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。對(duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。轉(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。量不變思維方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。濃度配比法:一般應(yīng)用于總量和分量都發(fā)生變化的狀況。小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之二(分?jǐn)?shù)、百分?jǐn)?shù)問題) 濃度與配比問題經(jīng)驗(yàn)總結(jié):在配比的過程中存在這樣的一個(gè)反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。 溶質(zhì):溶解在其它物質(zhì)里的物質(zhì)(例如糖、鹽、酒精等)叫溶質(zhì)。溶劑:溶解其它物質(zhì)的物質(zhì)(例如水、汽油等)叫溶劑。溶液:溶質(zhì)和溶劑混合成的液體(例如鹽水、糖水等)叫溶液?;竟剑喝芤褐亓?溶質(zhì)重量+溶劑重量;溶質(zhì)重量=溶液重量濃度;濃度= 100%= 100%理論部分小練習(xí):試推出溶質(zhì)、溶液、溶劑三者的其它公式。經(jīng)驗(yàn)總結(jié):在配比的過程中存在這樣的一個(gè)反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之二(濃度問題) 經(jīng)濟(jì)問題利潤(rùn)的百分?jǐn)?shù)=(賣價(jià)-成本)成本100%;賣價(jià)=成本(1+利潤(rùn)的百分?jǐn)?shù)); 成本=賣價(jià)(1+利潤(rùn)的百分?jǐn)?shù));商品的定價(jià)按照期望的利潤(rùn)來確定;定價(jià)=成本(1+期望利潤(rùn)的百分?jǐn)?shù));本金:儲(chǔ)蓄的金額; 利率:利息和本金的比; 利息=本金利率期數(shù);含稅價(jià)格=不含稅價(jià)格(1+增值稅稅率)小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之二(經(jīng)濟(jì)問題) 工程問題基本公式:工作總量=工作效率工作時(shí)間工作效率=工作總量工作時(shí)間工作時(shí)間=工作總量工作效率基本思路:假設(shè)工作總量為“1”(和總工作量無關(guān));假設(shè)一個(gè)方便的數(shù)為工作總量(一般是它們完成工作總量所用時(shí)間的最小公倍數(shù)),利用上述三個(gè)基本關(guān)系,可以簡(jiǎn)單地表示出工作效率及工作時(shí)間.關(guān)鍵問題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。經(jīng)驗(yàn)簡(jiǎn)評(píng):合久必分,分久必合。小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之二(工程問題) 綜合行程問題基本概念:行程問題是研究物體運(yùn)動(dòng)的,它研究的是物體速度、時(shí)間、路程三者之間的關(guān)系.基本公式:路程=速度時(shí)間;路程時(shí)間=速度;路程速度=時(shí)間關(guān)鍵問題:確定運(yùn)動(dòng)過程中的位置和方向。相遇問題:速度和相遇時(shí)間=相遇路程(請(qǐng)寫出其他公式)追及問題:追及時(shí)間路程差速度差(寫出其他公式)流水問題:順?biāo)谐?(船速+水速)順?biāo)畷r(shí)間逆水行程=(船速-水速)逆水時(shí)間順?biāo)俣?船速+水速逆水速度=船速-水速靜水速度=(順?biāo)俣?逆水速度)2水 速=(順?biāo)俣?逆水速度)2流水問題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。過橋問題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。主要方法:畫線段圖法基本題型:已知路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之二(行程問題) 周期循環(huán)與數(shù)表規(guī)律周期現(xiàn)象:事物在運(yùn)動(dòng)變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時(shí)間叫周期。關(guān)鍵問題:確定循環(huán)周期閏 年:一年有366天;年份能被4整除;如果年份能被100整除,則年份必須能被400整除;平 年:一年有365天。年份不能被4整除;如果年份能被100整除,但不能被400整除數(shù)的整除一、基本概念和符號(hào):1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。2、常用符號(hào):整除符號(hào)“|”,不能整除符號(hào)“ ”;因?yàn)榉?hào)“”,所以的符號(hào)“”;二、整除判斷方法:1. 能被2、5整除:末位上的數(shù)字能被2、5整除。2. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。4. 能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。5. 能被7整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。6. 能被11整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。7. 能被13整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。三、整除的性質(zhì):1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。2. 如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之三(數(shù)的整除性) 小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之三(奇數(shù)與偶數(shù)) 質(zhì)數(shù)與合數(shù)質(zhì)數(shù):一個(gè)數(shù)除了1和它本身之外,沒有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。合數(shù):一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N= ,其中a1、a2、a3an都是合數(shù)N的質(zhì)因數(shù),且a1<a2<a3<<an。求約數(shù)個(gè)數(shù)的公式:P=(r1+1)(r2+1)(r3+1)(rn+1)互質(zhì)數(shù):如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之三(質(zhì)數(shù)與合數(shù)) 小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之三(約數(shù)與倍數(shù)) 余數(shù)問題余數(shù)、同余與周期一、同余的定義:若兩個(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對(duì)于模m同余。已知三個(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對(duì)于模m同余,記作ab(mod m),讀作a同余于b模m。二、同余的性質(zhì):二、同余的性質(zhì):自身性:aa(mod m);對(duì)稱性:若ab(mod m),則ba(mod m);傳遞性:若ab(mod m),bc(mod m),則a c(mod m);和差性:若ab(mod m),cd(mod m),則a+cb+d(mod m),a-cb-d(mod m);相乘性:若a b(mod m),cd(mod m),則ac bd(mod m);乘方性:若ab(mod m),則anbn(mod m);同倍性:若a b(mod m),整數(shù)c,則ac bc(mod mc);三、關(guān)于乘方的預(yù)備知識(shí):若A=ab,則MA=Mab=(Ma)b若B=c+d則MB=Mc+d=McMd四、被3、9、11除后的余數(shù)特征一個(gè)自然數(shù)M,n表示M的各個(gè)數(shù)位上數(shù)字的和,則Mn(mod 9)或(mod 3);一個(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,Y表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則MY-X或M11-(X-Y)(mod 11);五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-11(mod p)。余數(shù)及其應(yīng)用基本概念:對(duì)任意自然數(shù)a、b、q、r,如果使得ab=qr,且0<r<b,那么r叫做a除以b的余數(shù),q叫做a除以b的不完全商。余數(shù)的性質(zhì):余數(shù)小于除數(shù)。若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之三(帶余除法) 完全平方數(shù)完全平方數(shù)特征:1. 末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。2. 除以3余0或余1;反之不成立。3. 除以4余0或余1;反之不成立。4. 約數(shù)個(gè)數(shù)為奇數(shù);反之成立。5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。6. 奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。7. 兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y2小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之三(完全平方數(shù)) 二進(jìn)制及其應(yīng)用十進(jìn)制:用09十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+A3102+A2101+A1100 注意:N0=;N=N(其中N是任意自然數(shù))二進(jìn)制:用01兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。(2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7+A322+A221+A120注意:An不是0就是1。十進(jìn)制化成二進(jìn)制:根據(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點(diǎn)即可寫出。小學(xué)奧數(shù)知識(shí)點(diǎn)匯編大全之三(數(shù)的進(jìn)制) 比和比例比:兩個(gè)數(shù)相除又叫兩個(gè)數(shù)的比。比號(hào)前面的數(shù)叫比的前項(xiàng),比號(hào)后面的數(shù)叫比的后項(xiàng)。比值:比的前項(xiàng)除以后項(xiàng)的商,叫做比值。比的性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(零除外),比值不變。比例:表示兩個(gè)比相等的式子叫做比例。a:b=c:d或比例的性質(zhì):兩個(gè)外項(xiàng)積等于兩個(gè)內(nèi)項(xiàng)積(交叉相乘),ad=bc。正比例:若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時(shí)),則A與B成正比。反比例:若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時(shí)),則A與B成反比。比例尺:圖上距離與實(shí)際距離的比叫做比例尺。按比例分配:把幾個(gè)數(shù)按一定比例分成幾份,叫按比例分配。時(shí)鐘問題鐘面追及基本思路:封閉曲線上的追及問題。關(guān)鍵問題:確定分針與時(shí)針的初始位置;確定分針與時(shí)針的路程差;基本方法:分格方法:時(shí)鐘的鐘面圓周被均勻分成60小格,每小格我們稱為1分格。分針每小時(shí)走60分格,即一周;而時(shí)針只走5分格,故分針每分鐘走1分格,時(shí)針每分鐘走112分格。度數(shù)方法:從角度觀點(diǎn)看,鐘面圓周一周是360,分針每分鐘轉(zhuǎn)360/60 度,即6,時(shí)針每分鐘轉(zhuǎn)360/12*60 度,即1/2 度。時(shí)鐘問題快慢表問題基本思路:1、 按照行程問題中的思維方法解題;2、 不同的表當(dāng)成速度不同的運(yùn)動(dòng)物體;3、 路程的單位是分格(表一周為60分格);4、 時(shí)間是標(biāo)準(zhǔn)表所經(jīng)過的時(shí)間;5、 合理利用行程問題中的比例關(guān)系;簡(jiǎn)單方程代數(shù)式:用運(yùn)算符號(hào)(加減乘除)連接起來的字母或者數(shù)字。方程:含有未知數(shù)的等式叫方程。列方程:把兩個(gè)或幾個(gè)相等的代數(shù)式用等號(hào)連起來。列方程關(guān)鍵問題:用兩個(gè)以上的不同代數(shù)式表示同一個(gè)數(shù)。等式性質(zhì):等式兩邊同時(shí)加上或減去一個(gè)數(shù),等式不變;等式兩邊同時(shí)乘以或除以一個(gè)數(shù)(除0),等式不變。移項(xiàng):把數(shù)或式子改變符號(hào)后從方程等號(hào)的一邊移到另一邊;移項(xiàng)規(guī)則:先移加減,后變乘除;先去大括號(hào),再去中括號(hào),最后去小括號(hào)。加去括號(hào)規(guī)則:在只有加減運(yùn)算的算式里,如果括號(hào)前面是“+”號(hào),則添、去括號(hào),括號(hào)里面的運(yùn)算符號(hào)都不變;如果括號(hào)前面是“”號(hào),添、去括號(hào),括號(hào)里面的運(yùn)算符號(hào)都要改變;括號(hào)里面的數(shù)前沒有“+”或“”的,都按有“+”處理。移項(xiàng)關(guān)鍵問題:運(yùn)用等式的性質(zhì),移項(xiàng)規(guī)則,加、去括號(hào)規(guī)則。乘法分配率:a(b+c)=ab+ac解方程步驟:去分母;去括號(hào);移項(xiàng);合并同類項(xiàng);求解;方程組:幾個(gè)二元一次方程組成的一組方程。解方程組的步驟:消元;按一元一次方程步驟。消元的方法:加減消元;代入消元。