2019屆高考數(shù)學全冊精準培優(yōu)專練(打包20套)理.zip
2019屆高考數(shù)學全冊精準培優(yōu)專練(打包20套)理.zip,2019,高考,數(shù)學,精準,培優(yōu)專練,打包,20
培優(yōu)點二 函數(shù)零點
1.零點的判斷與證明
例1:已知定義在上的函數(shù),
求證:存在唯一的零點,且零點屬于.
【答案】見解析
【解析】,,,在單調遞增,
,,,,使得
因為單調,所以的零點唯一.
2.零點的個數(shù)問題
例2:已知函數(shù)滿足,當,,若在區(qū)間內,
函數(shù)有三個不同零點,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】B
【解析】,當時,,
所以,而有三個不同零點與有三個不同交點,如圖所示,可得直線應在圖中兩條虛線之間,所以可解得:
3.零點的性質
例3:已知定義在上的函數(shù)滿足:,且,,則方程在區(qū)間上的所有實根之和為( )
A. B. C. D.
【答案】C
【解析】先做圖觀察實根的特點,在中,通過作圖可發(fā)現(xiàn)在關于中心對稱,
由可得是周期為2的周期函數(shù),則在下一個周期中,關于中心對稱,以此類推。
從而做出的圖像(此處要注意區(qū)間端點值在何處取到),再看圖像,,可視為將的圖像向左平移2個單位后再向上平移2個單位,
所以對稱中心移至,剛好與對稱中心重合,如圖所示:可得共有3個交點,
其中,與關于中心對稱,所以有。所以.故選C.
4.復合函數(shù)的零點
例4:已知函數(shù),若方程恰有七個不相同的實根,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】B
【解析】考慮通過圖像變換作出的圖像(如圖),因為最多只能解出2個,若要出七個根,則,,所以,解得:.
對點增分集訓
一、選擇題
1.設,則函數(shù)的零點所在的區(qū)間為( )
A. B. C. D.
【答案】B
【解析】∵,,∴,
∵函數(shù)的圖象是連續(xù)的,且為增函數(shù),
∴的零點所在的區(qū)間是.故選B.
2.已知是函數(shù)的零點,若,則的值滿足( )
A. B.
C. D.的符號不確定
【答案】C
【解析】在上是增函數(shù),若,則.
3.函數(shù)的一個零點在區(qū)間內,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】C
【解析】因為在上是增函數(shù),則由題意得,解得,
故選C.
4.若,則函數(shù)的兩個零點分別位于區(qū)間( )
A.和內 B.和內
C.和內 D.和內
【答案】A
【解析】∵,∴,,,
由函數(shù)零點存在性定理可知,在區(qū)間,內分別存在零點,又函數(shù)是二次函數(shù),
最多有兩個零點.因此函數(shù)的兩個零點分別位于區(qū)間,內,故選A.
5.設函數(shù)是定義在上的奇函數(shù),當時,,則的零點個數(shù)為( )
A.1 B.2 C.3 D.4
【答案】C
【解析】因為函數(shù)是定義域為的奇函數(shù),所以,即0是函數(shù)的一個零點,當時,令,則,分別畫出函數(shù)和的圖象,
如圖所示,兩函數(shù)圖象有一個交點,所以函數(shù)有一個零點,
根據(jù)對稱性知,當時函數(shù)也有一個零點.
綜上所述,的零點個數(shù)為3.故選C.
6.函數(shù)的零點個數(shù)為( )
A.3 B.2 C.7 D.0
【答案】B
【解析】方法一:由得或,解得或,
因此函數(shù)共有2個零點.
方法二:函數(shù)的圖象如圖所示,由圖象知函數(shù)共有2個零點.
7.已知函數(shù),則使方程有解的實數(shù)的取值范圍是( )
A. B.
C. D.
【答案】D
【解析】當時,,即,解得;當時,,即,
解得,即實數(shù)的取值范圍是.故選D.
8.若函數(shù)在區(qū)間內存在一個零點,則的取值范圍是( )
A. B.
C. D.
【答案】B
【解析】當時,與軸無交點,不合題意,所以;函數(shù)在區(qū)間內是單調函數(shù),所以,即,解得或.故選B.
9.已知函數(shù),則使函數(shù)有零點的實數(shù)的取值范圍是( )
A. B.
C. D.
【答案】D
【解析】函數(shù)的零點就是方程的根,畫出的大致圖象(圖略).觀察它與直線的交點,得知當或時,有交點,即函數(shù)有零點.故選D.
10.已知是奇函數(shù)且是上的單調函數(shù),若函數(shù)只有一個零點,則實數(shù)
的值是( )
A. B. C. D.
【答案】C
【解析】令,則,因為是上的單調函數(shù),所以,只有一個實根,即只有一個實根,則,解得.
11.已知當時,函數(shù)的圖象與的圖象有且只有一個交點,則正實數(shù)的取值范圍是( )
A. B.
C. D.
【答案】B
【解析】在同一直角坐標系中,分別作出函數(shù)與的大致圖象.分兩種情形:
(1)當時,,如圖①,當時,與的圖象有一個交點,符合題意.
(2)當時,,如圖②,要使與的圖象在上只有一個交點,
只需,即,解得或(舍去).
綜上所述,.故選B.
12.已知函數(shù)和在的圖像如下,給出下列四個命題:
(1)方程有且只有6個根
(2)方程有且只有3個根
(3)方程有且只有5個根
(4)方程有且只有4個根
則正確命題的個數(shù)是( )
A.1 B.2 C.3 D.4
【答案】B
【解析】每個方程都可通過圖像先拆掉第一層,找到內層函數(shù)能取得的值,從而統(tǒng)計出的總數(shù).
(1)中可得,,,進而有2個對應的,有2個,有2個,總計6個,(1)正確;
(2)中可得,,進而有1個對應的,有3個,總計4個,
(2)錯誤;
(3)中可得,,,進而有1個對應的,有3個,有1個,總計5個,(3)正確;
(4)中可得:,,進而有2個對應的,有2個,共計4個,(4)正確
則綜上所述,正確的命題共有3個.
二、填空題
13.函數(shù)的零點個數(shù)為________.
【答案】2
【解析】由,得,作出函數(shù)和的圖象,
由上圖知兩函數(shù)圖象有2個交點,故函數(shù)有2個零點.
14.設函數(shù)與的圖象的交點為,若,,則所在的區(qū)間是______.
【答案】
【解析】令,則,易知為增函數(shù),且,,∴所在的區(qū)間是.
15.函數(shù)的零點個數(shù)是________.
【答案】2
【解析】當時,令,解得(正根舍去),所以在上有一個零點;
當時,恒成立,所以在上是增函數(shù).又因為,,所以在上有一個零點,綜上,函數(shù)的零點個數(shù)為2.
16.已知函數(shù),,若方程恰有4個互異的實數(shù)根,則實數(shù)的取值范圍是________________.
【答案】
【解析】設,,
在同一直角坐標系中作出,的圖象如圖所示.
由圖可知有4個互異的實數(shù)根等價于與的圖象有4個不同的交點且4個交點的橫坐標都小于1,所以有兩組不同解,
消去得有兩個不等實根,
所以,即,
解得或.又由圖象得,∴或.
三、解答題
17.關于的二次方程在區(qū)間上有解,求實數(shù)的取值范圍.
【答案】
【解析】顯然不是方程的解,
時,方程可變形為,
又∵在上單調遞減,在上單調遞增,
∴在上的取值范圍是,∴,∴,
故的取值范圍是.
18.設函數(shù).
(1)作出函數(shù)的圖象;
(2)當且時,求的值;
(3)若方程有兩個不相等的正根,求的取值范圍.
【答案】(1)見解析;(2)2;(3).
【解析】(1)如圖所示.
(2)∵
故在上是減函數(shù),而在上是增函數(shù).
由且,得且,∴.
(3)由函數(shù)的圖象可知,當時,方程有兩個不相等的正根.
10
收藏
資源目錄
編號:4044083
類型:共享資源
大小:8.07MB
格式:ZIP
上傳時間:2019-12-30
30
積分
- 關 鍵 詞:
-
2019
高考
數(shù)學
精準
培優(yōu)專練
打包
20
- 資源描述:
-
2019屆高考數(shù)學全冊精準培優(yōu)專練(打包20套)理.zip,2019,高考,數(shù)學,精準,培優(yōu)專練,打包,20
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。