(江蘇專用)2019版高考物理大一輪復(fù)習(xí) 第4單元 曲線運動 萬有引力與航天學(xué)案
《(江蘇專用)2019版高考物理大一輪復(fù)習(xí) 第4單元 曲線運動 萬有引力與航天學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2019版高考物理大一輪復(fù)習(xí) 第4單元 曲線運動 萬有引力與航天學(xué)案(65頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第四單元 曲線運動 萬有引力與航天 高考熱點統(tǒng)計 要求 2014年 2015年 2016年 2017年 高考基礎(chǔ)要求及冷點統(tǒng)計 Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ 運動的合成與分解 Ⅱ 16 17 離心現(xiàn)象(Ⅰ) 第二宇宙速度和第三宇宙速度(Ⅰ) 經(jīng)典時空觀和相對論時空觀(Ⅰ) 以上三個考點為高考冷點,但要求理解離心運動產(chǎn)生原因及第二宇宙速度和第三宇宙速度各自代表的含義. 拋體運動 Ⅱ 15 18 15 17 勻速圓周運動、角速度、線速度、向心加
2、速度 Ⅰ 20 16 14 勻速圓周運動的向心力 Ⅱ 20 17 25 20 17 萬有引力定律及其應(yīng)用 Ⅱ 14 19 14 環(huán)繞速度 Ⅱ 21 16 17 考情分析 1.運動的合成與分解是解決曲線運動的基本思想和方法,高考著重考查的知識點有:曲線運動的特點、平拋運動和圓周運動的規(guī)律、萬有引力與天體運動規(guī)律、宇宙速度與衛(wèi)星運行及變軌問題. 2.從命題趨勢上看,突出物理與現(xiàn)代科技、生產(chǎn)、生活的結(jié)合,特別是與現(xiàn)代航天技術(shù)的聯(lián)系會更加密切,與牛頓
3、運動定律、機械能守恒定律等內(nèi)容結(jié)合命題的可能性也較大,在2019年備考中要引起重視. 第9講 運動的合成與分解 一、曲線運動 速度方向 質(zhì)點在軌跡上某一點的瞬時速度的方向,沿曲線上該點的 方向? 運動性質(zhì) 曲線運動一定是變速運動(a恒定: 運動;a變化:非勻變速曲線運動)? 曲線運動條件 (1)運動學(xué)角度:物體的 方向跟速度方向不在同一條直線上? (2)動力學(xué)角度:物體所受的 方向跟速度方向不在同一條直線上? 二、運動的合成與分解 概念 運動的合成:已知分運動求 ? 運動的分解:已知合運動求 ? 分解原則 根據(jù)運
4、動的 分解,也可采用正交分解? 遵循規(guī)律 位移、速度、加速度都是矢量,它們的合成與分解都遵循 定則? 三、合運動與分運動的關(guān)系 等時性 合運動和分運動經(jīng)歷的時間相等,即同時開始,同時停止 獨立性 一個物體同時參與幾個分運動,各分運動獨立進(jìn)行,不受其他分運動的影響 等效性 各分運動的規(guī)律疊加起來與合運動的規(guī)律有完全相同的效果 同體性 合運動與分運動研究的是同一個物體 【思維辨析】 (1)曲線運動一定是變速運動. ( ) (2)水流速度越大,則渡河時間越長. ( ) (3)先發(fā)生分運動,然后發(fā)生合運動. ( ) (4)合速度一定大于分速
5、度. ( ) (5)運動的合成與分解的實質(zhì)是對描述運動的物理量(位移、速度、加速度)的合成與分解. ( ) (6)兩個直線運動的合運動一定是直線運動. ( ) (7)做曲線運動的物體受到的合外力一定是變力. ( ) (8)做曲線運動的物體所受的合外力的方向一定指向軌跡的凹側(cè). ( ) 考點一 曲線運動的條件與軌跡分析 1.曲線運動條件:物體受到的合外力與速度始終不共線. 2.曲線運動特征 (1)運動學(xué)特征:由于做曲線運動的物體的瞬時速度方向沿曲線上物體位置的切線方向,所以做曲線運動的物體的速度方向時刻發(fā)生變化,即曲線運動一定為變速運動. (2)動力學(xué)特征:由于做
6、曲線運動的物體的速度時刻變化,說明物體具有加速度,根據(jù)牛頓第二定律可知,物體所受合外力一定不為零且和速度方向始終不在一條直線上(曲線運動條件).合外力在垂直于速度方向上的分力改變物體速度的方向,合外力在沿速度方向上的分力改變物體速度的大小. (3)軌跡特征:曲線運動的軌跡始終夾在合力方向與速度方向之間,而且向合力的一側(cè)彎曲,或者說合力的方向總指向曲線的凹側(cè).軌跡只能平滑變化,不會出現(xiàn)折線. (4)能量特征:如果物體所受的合外力始終和物體的速度垂直,則合外力對物體不做功,物體的動能不變;若合外力不與物體的速度方向垂直,則合外力對物體做功,物體的動能發(fā)生變化. 1 (多選)[2017·濟南月
7、考] 光滑水平面上一運動質(zhì)點以速度v0通過點O,如圖9-1所示,與此同時給質(zhì)點加上沿x軸正方向的恒力Fx和沿y軸正方向的恒力Fy.下列說法正確的是 ( )
圖9-1
A.因為有Fx,故質(zhì)點一定做曲線運動
B.如果Fy
8、從A點運動到C點,圖中1、2、3為其可能的路徑,則可以使物體通過A點時 ( ) 圖9-2 A.獲得由A指向B的任意大小的瞬時速度;物體的路徑是2 B.獲得由A指向B的確定大小的瞬時速度;物體的路徑是2 C.持續(xù)受到平行于AB的任意大小的恒力;物體的路徑可能是1 D.持續(xù)受到平行于AB的確定大小的恒力;物體的路徑可能是3 ■ 規(guī)律總結(jié) (1)當(dāng)合外力方向與速度方向的夾角為銳角時,物體的速率增大; (2)當(dāng)合外力方向與速度方向的夾角為鈍角時,物體的速率減小; (3)當(dāng)合外力方向與速度方向垂直時,物體的速率不變. 考點二 運動的合成與分解 1.運動合成的計算 (1)如果
9、各分運動在同一直線上,需選取正方向,與正方向同向的量取“+”號,與正方向反向的量取“-”號,從而將矢量運算簡化為代數(shù)運算. (2)兩分運動不在同一直線上時,按照平行四邊形定則進(jìn)行合成. 2.合運動性質(zhì)的判定 根據(jù)合加速度方向與合初速度方向判定合運動是直線運動還是曲線運動,具體分以下幾種情況: 兩個互成角度的分運動 合運動的性質(zhì) 兩個勻速直線運動 勻速直線運動 兩個初速度為零的勻加速直線運動 勻加速直線運動 兩個初速度不為零的勻變速直線運動 如果v合與a合共線,為勻變速直線運動 如果v合與a合不共線,為勻變速曲線運動 一個勻速直線運動和一個勻變速直線運動 如果v合
10、與a合共線,為勻變速直線運動 如果v合與a合不共線,為勻變速曲線運動 2 [2015·全國卷Ⅱ] 由于衛(wèi)星的發(fā)射場不在赤道上,同步衛(wèi)星發(fā)射后需要從轉(zhuǎn)移軌道經(jīng)過調(diào)整再進(jìn)入地球同步軌道.當(dāng)衛(wèi)星在轉(zhuǎn)移軌道上飛經(jīng)赤道上空時,發(fā)動機點火,給衛(wèi)星一附加速度,使衛(wèi)星沿同步軌道運行.已知同步衛(wèi)星的環(huán)繞速度約為3.1×103 m/s,某次發(fā)射衛(wèi)星飛經(jīng)赤道上空時的速度為1.55×103 m/s,此時衛(wèi)星的高度與同步軌道的高度相同,轉(zhuǎn)移軌道和同步軌道的夾角為30°,如圖9-3所示,發(fā)動機給衛(wèi)星的附加速度的方向和大小約為( ) 圖9-3 A.西偏北方向,1.9×103 m/s B.東偏南方向,1.
11、9×103 m/s C.西偏北方向,2.7×103 m/s D.東偏南方向,2.7×103 m/s 式題 (多選)[2017·江蘇連云港模擬] 如圖9-4所示,一塊橡皮用細(xì)線懸掛于O點,用釘子靠著線的左側(cè)沿與水平方向成30°角的斜面向右上方以速度v勻速運動,運動中始終保持懸線豎直,下列說法正確的是 ( ) 圖9-4 A.橡皮的速度大小為v B.橡皮的速度大小為v C.橡皮的速度與水平方向成60°角 D.橡皮的速度與水平方向成45°角 ■ 方法技巧 上面例2變式題是對“相對運動”和“運動的合成與分解”知識的綜合考查,解答此類問題要注意以下幾點:(1)理解參考系的概念,參
12、考系是假定為不動的物體;(2)應(yīng)用“運動的合成與分解”的思想,先研究分運動,再研究合運動. 考點三 小船渡河問題 模型解讀 分運動1 分運動2 合運動 運動 船相對于靜水的劃行運動 船隨水漂流的運動 船的實際運動 速度本質(zhì) 發(fā)動機給船的速度v1 水流給船的速度v2 船相對于岸的速度v 速度方向 沿船頭指向 沿水流方向 合速度方向,軌跡(切線)方向 渡河時間 (1)渡河時間只與船垂直于河岸方向的分速度有關(guān),與水流速度無關(guān); (2)渡河時間最短:船頭正對河岸時,渡河時間最短,tmin=(d為河寬) 渡河位移 (1)渡河路徑最短(v1
13、>v2時):合速度垂直于河岸時,航程最短,xmin=d.船頭指向上游與河岸夾角為α,cos α=
(2)渡河路徑最短(v1 14、一個騎射項目,運動員騎在奔跑的馬上,彎弓放箭射擊側(cè)向的固定目標(biāo),假設(shè)運動員騎馬奔跑的速度為v1,運動員靜止時射出的弓箭速度為v2,跑道離固定目標(biāo)的最近距離為d.要想命中目標(biāo)且射出的箭在空中飛行時間最短,則 ( )
圖9-5
A.運動員放箭處到目標(biāo)的距離為
B.運動員放箭處到目標(biāo)的距離為
C.箭射到目標(biāo)的最短時間為
D.箭射到目標(biāo)的最短時間為
■ 建模點撥
解小船渡河問題必須明確以下兩點:
(1)解決這類問題的關(guān)鍵:正確區(qū)分船的分運動和合運動.船的航行方向也就是船頭指向,是分運動;船的運動方向也就是船的實際運動方向,是合運動,一般情況下與船頭指向不一致.
(2)運動分解 15、的基本方法:按實際效果分解,一般用平行四邊形定則沿水流方向和船頭指向進(jìn)行分解.
考點四 關(guān)聯(lián)速度問題初探
用繩、桿相牽連的物體,在運動過程中,其兩物體的速度通常不同,但物體沿繩或桿方向的速度分量大小相等.關(guān)聯(lián)速度問題的深入研究,詳見聽課手冊P78增分微課4.
4 如圖9-6所示,人在岸上捉住繩上的A點以速度v0水平向左勻速拉動輕繩,繩跨過定滑輪O拉著在水面上向左移動的小船B.若某一瞬間OB繩與水平方向的夾角為θ,則此時小船B的速度v為多大?
圖9-6
式題 [2017·邯鄲檢測] 如圖9-7所示,汽車勻速向右運動,汽車用跨過定滑輪的輕繩提升 16、物塊A.在物塊A到達(dá)滑輪處之前,關(guān)于物塊A,下列說法正確的是 ( )
圖9-7
A.將豎直向上做勻速運動
B.將處于超重狀態(tài)
C.將處于失重狀態(tài)
D.將豎直向上先加速運動后減速運動
■ 方法技巧
先確定合運動的方向(物體實際運動的方向),然后分析這個合運動所產(chǎn)生的實際效果(一方面使繩或桿伸縮的效果;另一方面使繩或桿轉(zhuǎn)動的效果)以確定兩個分速度的方向(沿繩或桿方向的分速度和垂直于繩或桿方向的分速度,而沿繩或桿方向的分速度大小相同).
第10講 拋體運動
一、平拋運動
1.定義:將物體以一定的初速度沿水平方向拋出,不考慮空氣阻力,物體只在 作用下的運動.?
17、
2.性質(zhì):屬于勻變速曲線運動,其運動軌跡為 .?
3.研究方法:分解成水平方向的勻速直線運動和豎直方向的 兩個分運動.?
4.規(guī)律
(1)水平方向: 運動,vx=v0,x=v0t,ax=0.?
(2)豎直方向: 運動,vy=gt,y=gt2,ay=g.?
(3)實際運動:v=,s=,a= .?
二、類平拋運動
1.定義:加速度恒定、加速度方向與初速度方向 的運動.?
2.性質(zhì):屬于勻變速曲線運動,其運動軌跡為 .?
3.研究方法:一般將類平拋運動沿 和加速度兩個方向分解.?
4.運動規(guī)律:與平拋運動類似.
【思維辨析】 18、
(1)平拋運動屬于勻變速曲線運動. ( )
(2)平拋運動的加速度方向時刻在變化. ( )
(3)平拋運動的豎直分運動是自由落體運動. ( )
(4)做平拋運動的物體在任意時刻的速度方向與水平方向的夾角保持不變. ( )
(5)做平拋運動的物體在任意相等的兩段時間內(nèi)的速度變化相同. ( )
(6)對于在相同高度以相同速度平拋的物體,在月球上的水平位移與在地球上的水平位移相等. ( )
考點一 平拋運動規(guī)律的一般應(yīng)用
1.水平射程和飛行時間
(1)飛行時間:由t=可知,飛行時間只與h、g有關(guān),與v0無關(guān).
(2)水平射程:由x=v0t=v0可知,水平射程由 19、v0、h、g共同決定.
2.落地速度:v=,與水平方向的夾角的正切tan α=,所以落地速度與v0、g和h有關(guān).
3.速度改變量:物體在任意相等時間內(nèi)的速度改變量Δv=gΔt相同,方向恒為豎直向下,如圖10-1所示.
圖10-1
4.平拋運動的兩個重要推論:
推論一:做平拋(或類平拋)運動的物體在任一時刻或任一位置處,設(shè)其末速度方向與水平方向的夾角為α,位移與水平方向的夾角為β,則tan α=2tan β.
推論二:做平拋(或類平拋)運動的物體在任意時刻的瞬時速度方向的反向延長線一定過此時水平位移的中點,即圖10-2中B點為OC的中點.
圖10-2
1 如圖10-3所示 20、,將一小球從坐標(biāo)原點沿著水平軸Ox以v0=2 m/s的速度拋出,經(jīng)過一段時間小球到達(dá)P點,M為P點在Ox軸上的投影,作小球軌跡在P點的切線并反向延長,與Ox軸相交于Q點,已知QM=3 m,則小球運動的時間為 ( )
圖10-3
A.1 s B.2 s C.3 s D.4 s
式題1 [2017·江蘇卷] 如圖10-4所示,A、B兩小球從相同高度同時水平拋出,經(jīng)過時間t在空中相遇.若兩球的拋出速度都變?yōu)樵瓉淼?倍,則兩球從拋出到相遇經(jīng)過的時間為 ( )
圖10-4
A.t B.t
C.
式題2 (多選)[2017·浙江嘉興模擬] 如圖10-5所示,水平地面 21、的上空有一架飛機在進(jìn)行投彈訓(xùn)練,飛機沿水平方向做勻加速直線運動.當(dāng)飛機飛過觀察點B正上方A點時投放一顆炸彈,經(jīng)時間T炸彈落在距觀察點B正前方L1處的C點,與此同時飛機投放出第二顆炸彈,炸彈最終落在距觀察點B正前方L2處的D點,且L2=3L1,空氣阻力不計.以下說法正確的是 ( )
圖10-5
A.飛機第一次投彈時的速度為
B.飛機第二次投彈時的速度為
C.飛機水平飛行的加速度為
D.兩次投彈時間間隔T內(nèi)飛機飛行的距離為
■ 方法技巧
(1)物體做平拋運動的時間由物體被拋出點的高度決定,而物體的水平位移由物體被拋出點的高度和物體的初速度共同決定.
(2)兩條平拋運動軌 22、跡的相交處是兩物體的可能相遇處,兩物體要在此處相遇,必須同時到達(dá)此處.
考點二 平拋運動與斜面結(jié)合問題
實例
實例1
實例2
實例3
圖示
定量關(guān)系
tan θ=
tan θ=
水平方向:
R±=v0t
豎直方向:
h=gt2
考向一 平拋與斜面結(jié)合
2 [2017·山東淄博實驗中學(xué)月考] 如圖10-6所示,在斜面頂端的A點以速度v平拋一小球,經(jīng)t1時間小球落到斜面上B點處;若在A點將此小球以速度0.5v水平拋出,則經(jīng)t2時間小球落到斜面上的C點處.以下判斷正確的是 ( )
圖10-6
A.AB∶AC=2∶1 B.A 23、B∶AC=4∶1
C.t1∶t2=4∶1 D.t1∶t2=∶1
式題 (多選)[2017·蕪湖質(zhì)檢] 如圖10-7所示,將一小球以水平速度v0=10 m/s從O點向右拋出,經(jīng) s小球恰好垂直落到斜面上的A點,B點是小球做自由落體運動在斜面上的落點,不計空氣阻力,g取10 m/s2.以下判斷正確的是 ( )
圖10-7
A.斜面的傾角是60°
B.小球的拋出點距A點的豎直高度是15 m
C.若將小球以水平速度v'0=5 m/s向右拋出,它一定落在斜面上AB的中點P的上方
D.若將小球以水平速度v'0=5 m/s向右拋出,它一定落在斜面上AB的中點P處
考向 24、二 平拋與弧面結(jié)合
3 [2017·江淮十校聯(lián)考] 如圖10-8所示,AB為半圓環(huán)ACB的水平直徑,C為環(huán)上的最低點,環(huán)半徑為R.一個小球從A點以速度v0水平拋出,不計空氣阻力,則下列判斷正確的是 ( )
圖10-8
A.v0越大,小球落在圓環(huán)上的時間越長
B.即使v0取值不同,小球落到環(huán)上時的速度方向和水平方向之間的夾角也相同
C.當(dāng)v0取值適當(dāng)時,可以使小球垂直撞擊半圓環(huán)
D.無論v0取何值,小球都不可能垂直撞擊半圓環(huán)
式題 [2017·青島月考] 如圖10-9所示,在豎直面內(nèi)有一個以AB為水平直徑的半圓,O為圓心,D為最低點.圓上有一點C,且∠COD=60°.在A點 25、以速率v1沿AB方向拋出一小球,小球能擊中D點;現(xiàn)在C點以速率v2沿BA方向拋出小球,也能擊中D點.重力加速度為g,不計空氣阻力.下列說法正確的是 ( )
圖10-9
A.圓的半徑為R=
C.速率v2=v1
■ 建模點撥
解答與斜面及半圓有關(guān)的平拋運動問題的技巧
(1)從斜面上某點拋出后又落到斜面上,位移與水平方向的夾角等于斜面的傾角;
(2)從斜面外拋出的物體落到斜面上,注意找速度方向與斜面的傾角的關(guān)系;
(3)從半圓邊緣拋出的物體落到半圓上,應(yīng)合理利用圓與直角三角形的幾何知識.
考點三 平拋臨界問題
常見的“三種”臨界特征
(1)有些題目中有“剛好”“恰好”“正 26、好”等字眼,明顯表明題述的過程中存在著臨界點.
(2)若題目中有“取值范圍”“多長時間”“多大距離”等詞語,表明題述的過程中存在著“起止點”,而這些起止點往往就是臨界點.
(3)若題目中有“最大”“最小”“至多”“至少”等字眼,表明題述的過程中存在著極值,這個極值點往往是臨界點.
4 [2016·浙江卷] 在真空環(huán)境內(nèi)探測微粒在重力場中能量的簡化裝置如圖10-10所示.P是一個微粒源,能持續(xù)水平向右發(fā)射質(zhì)量相同、初速度不同的微粒.高度為h的探測屏AB豎直放置,離P點的水平距離為L,上端A與P點的高度差也為h.
(1)若微粒打在探測屏AB的中點,求微粒在空中飛行的時間;
(2)求能被 27、屏探測到的微粒的初速度范圍;
(3)若打在探測屏A、B兩點的微粒的動能相等,求L與h的關(guān)系.
圖10-10
式題 [2015·全國卷Ⅰ] 一帶有乒乓球發(fā)射機的乒乓球臺如圖10-11所示.水平臺面的長和寬分別為L1和L2,中間球網(wǎng)高度為h.發(fā)射機安裝于臺面左側(cè)邊緣的中點,能以不同速率向右側(cè)不同方向水平發(fā)射乒乓球,發(fā)射點距臺面高度為3h.不計空氣的作用,重力加速度大小為g.若乒乓球的發(fā)射速率v在某范圍內(nèi),通過選擇合適的方向,就能使乒乓球落到球網(wǎng)右側(cè)臺面上,則v的最大取值范圍是 ( )
圖10-11
A.
B.
C.
D.
28、■ 方法技巧
1.處理平拋運動中的臨界問題要抓住兩點
(1)找出臨界狀態(tài)對應(yīng)的臨界條件;
(2)要用分解速度或者分解位移的思想分析平拋運動的臨界問題.
2.平拋運動臨界極值問題的分析方法
(1)確定研究對象的運動性質(zhì);
(2)根據(jù)題意確定臨界狀態(tài);
(3)確定臨界軌跡,畫出軌跡示意圖;
(4)應(yīng)用平拋運動的規(guī)律結(jié)合臨界條件列方程求解.
考點四 平拋運動綜合問題
5 (多選)[2017·江西七校聯(lián)考] 如圖10-12所示,假設(shè)某滑雪者從山上M點以水平速度v0飛出,經(jīng)t0時間落在山坡上N點時速度方向剛好沿斜坡向下,接著從N點沿斜坡下滑,又經(jīng)t0時間到達(dá)坡底P處.已知斜坡NP與水 29、平面的夾角為60°,不計摩擦阻力和空氣阻力,則 ( )
圖10-12
A.滑雪者到達(dá)N點的速度大小為2v0
B.M、N兩點之間的距離為2v0t0
C.滑雪者沿斜坡NP下滑的加速度大小為
D.M、P之間的高度差為v0t0
式題 如圖10-13所示,傾角為37°的粗糙斜面的底端有一質(zhì)量m=1 kg的凹形小滑塊,小滑塊與斜面間的動摩擦因數(shù)μ=0.25.現(xiàn)小滑塊以某一初速度v從斜面底端上滑,同時在斜面底端正上方有一小球以速度v0水平拋出,經(jīng)過0.4 s,小球恰好垂直斜面落入凹槽,此時,小滑塊還在上滑.已知sin 37°=0.6,cos 37°=0.8,g取10 m/s2,求:
(1 30、)小球水平拋出的速度v0的大小;
(2)小滑塊的初速度v的大小.
圖10-13
考點五 斜拋運動
關(guān)于斜拋物體的運動問題,可利用運動的對稱性和可逆性進(jìn)行轉(zhuǎn)化,通過平拋運動的知識求解,例如斜拋運動可以分成從最高點開始的兩個對稱的平拋運動進(jìn)行處理,應(yīng)注意對整個物理過程進(jìn)行分析,形成清晰的物理情景.
6 [2016·江蘇卷] 有A、B兩小球,B的質(zhì)量為A的兩倍.現(xiàn)將它們以相同速率沿同一方向拋出,不計空氣阻力.圖10-14中①為A的運動軌跡,則B的運動軌跡是 ( )
圖10-14
A.① B.② C.③ D.④
■ 規(guī)律總結(jié)
31、
圖10-15
通過運動的合成與分解研究斜拋運動,這是研究斜拋運動的基本方法,通過這樣定量的分析可以有效提高對斜拋運動的認(rèn)識,所以必須了解斜拋運動的基本規(guī)律(以斜上拋為例).
(1)水平方向:v0x=v0cos θ,ax=0;
(2)豎直方向:v0y=v0sin θ,ay=g.
第11講 圓周運動
一、勻速圓周運動
1.定義:線速度大小 的圓周運動.?
2.性質(zhì):向心加速度大小不變,方向 ,是變加速曲線運動.?
3.條件:合力 ,方向始終與速度方向垂直且指向 .?
二、描述勻速圓周運動的基本參量
三、離心運動和近心運動
1 32、.受力特點,如圖11-1所示.
圖11-1
(1)當(dāng)F=0時,物體沿切線方向做勻速直線運動;
(2)當(dāng)F=mrω2時,物體做勻速圓周運動;
(3)當(dāng)0 33、
(5)汽車轉(zhuǎn)彎時速度過大就會向外發(fā)生側(cè)滑,這是由于汽車輪胎受沿轉(zhuǎn)彎半徑向內(nèi)的靜摩擦力不足以提供汽車轉(zhuǎn)彎所需向心力的緣故. ( )
【思維拓展】
1.勻速圓周運動和勻速直線運動中的兩個“勻速”的含義相同嗎?
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
2.勻速圓周運動中哪些物理量是不變的?
?????? 34、????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
考點一 圓周運動的運動學(xué)問題
傳動類型
圖示
結(jié)論
共軸傳動
(1)運動特點:轉(zhuǎn)動方向相同;
(2)定量關(guān)系:A點和B點轉(zhuǎn)動的周期相同、角速度相同,A點和B點的線速度大小與其半徑成正比
皮帶(鏈
條)傳動
(1)運動特點:兩輪的轉(zhuǎn)動方向與皮帶的繞行方 35、式有關(guān),可同向轉(zhuǎn)動,也可反向轉(zhuǎn)動;
(2)定量關(guān)系:由于A、B兩點相當(dāng)于皮帶上的不同位置的點,所以它們的線速度大小相同,二者角速度與其半徑成反比,周期與其半徑成正比
齒輪傳動
(1)運動特點:轉(zhuǎn)動方向相反;
(2)定量關(guān)系:vA=vB;;(z1、z2分別表示兩齒輪的齒數(shù))
1.[2017·廣東佛山二模] 明代出版的《天工開物》一書中就有牛力齒輪水車圖(如圖11-2所示),記錄了我們祖先的勞動智慧.若A、B、C三齒輪半徑的大小關(guān)系如圖所示,則 ( )
圖11-2
A.齒輪A的角速度比C的大
B.齒輪A與B的角速度相等
C.齒輪B與C邊緣的線速度大小相等
D.齒輪 36、A邊緣的線速度比C邊緣的大
2.[2017·成都質(zhì)檢] 光盤驅(qū)動器讀取數(shù)據(jù)的某種方式可簡化為以下模式:在讀取內(nèi)環(huán)數(shù)據(jù)時,以恒定角速度的方式讀取,而在讀取外環(huán)數(shù)據(jù)時,以恒定線速度的方式讀取.如圖11-3所示,設(shè)內(nèi)環(huán)內(nèi)邊緣半徑為R1,內(nèi)環(huán)外邊緣半徑為R2,外環(huán)外邊緣半徑為R3.A、B、C分別為各邊緣上的點,則讀取內(nèi)環(huán)上A點時A點的向心加速度大小和讀取外環(huán)上C點時C點的向心加速度大小之比為 ( )
圖11-3
A.
C.
3.如圖11-4所示,B和C是一組塔輪,即B和C半徑不同,但固定在同一轉(zhuǎn)動軸上,其半徑之比RB∶RC=3∶2,A輪的半徑大小與C輪的相同,它與B輪緊靠在一起,當(dāng)A輪 37、繞過其中心的豎直軸轉(zhuǎn)動時,由于摩擦作用,B輪也隨之無滑動地轉(zhuǎn)動起來.a、b、c為三輪邊緣上的三個點,則a、b、c三點在運動過程中的 ( )
圖11-4
A.線速度大小之比為3∶2∶2
B.角速度之比為3∶3∶2
C.轉(zhuǎn)速之比為2∶3∶2
D.向心加速度大小之比為9∶6∶4
■ 要點總結(jié)
傳動裝置的特點
(1)共軸傳動:固定在一起共軸傳動的物體上各點角速度相同.
(2)皮帶傳動、齒輪傳動和摩擦傳動:皮帶(或齒輪)傳動和不打滑的摩擦傳動的兩輪邊緣上各點線速度大小相等.
考點二 圓周運動的動力學(xué)問題
運動模型
飛機水平轉(zhuǎn)彎
火車轉(zhuǎn)彎
圓錐擺
向心力的來源圖示
38、
運動模型
飛車走壁
汽車在水
平路面轉(zhuǎn)彎
水平轉(zhuǎn)臺
向心力的來源圖示
考向一 水平面內(nèi)圓周運動的臨界問題
1 (多選)[2017·遼寧撫順一中模擬] 如圖11-5所示,兩物塊A、B套在水平粗糙的CD桿上,并用不可伸長的輕繩連接,整個裝置能繞過CD中點的軸轉(zhuǎn)動.已知兩物塊質(zhì)量相等,桿CD對物塊A、B的最大靜摩擦力相等,開始時繩子處于自然長度(繩子恰好伸直但無彈力),物塊B到軸的距離為物塊A到軸的距離的兩倍.現(xiàn)讓該裝置從靜止開始轉(zhuǎn)動,使轉(zhuǎn)速逐漸增大,在從繩子處于自然長度到兩物塊A、B即將滑動的過程中,下列說法正確的是 ( )
圖11-5
A.A 39、受到的靜摩擦力一直增大
B.B受到的靜摩擦力先增大后保持大小不變
C.A受到的靜摩擦力先增大后減小再增大
D.B受到的合外力先增大后保持大小不變
式題 [2017·東北三省三校模擬] 如圖11-6所示,可視為質(zhì)點的木塊A、B疊放在一起,放在水平轉(zhuǎn)臺上隨轉(zhuǎn)臺一起繞固定轉(zhuǎn)軸OO'勻速轉(zhuǎn)動,木塊A、B與轉(zhuǎn)軸OO'的距離為1 m,A的質(zhì)量為5 kg,B的質(zhì)量為10 kg.已知A與B間的動摩擦因數(shù)為0.2,B與轉(zhuǎn)臺間的動摩擦因數(shù)為0.3,最大靜摩擦力等于滑動摩擦力,g取10 m/s2.若木塊A、B與轉(zhuǎn)臺始終保持相對靜止,則轉(zhuǎn)臺角速度ω的最大值為 ( )
圖11-6
A.1 rad/s 40、 B. rad/s
C. rad/s D.3 rad/s
■ 方法技巧
物體隨水平轉(zhuǎn)盤做圓周運動,通常是靜摩擦力提供向心力,靜摩擦力隨轉(zhuǎn)速的增大而增大,當(dāng)靜摩擦力增大到最大靜摩擦力時,物體達(dá)到保持圓周運動的最大速度.若轉(zhuǎn)速繼續(xù)增大,物體將做離心運動.
考向二 圓錐擺類問題
2 (多選)[2017·江西九校聯(lián)考] 如圖11-7所示,一根細(xì)線下端拴一個金屬小球P,細(xì)線的上端固定在金屬塊Q上,Q放在帶小孔(小孔光滑)的水平桌面上,小球在某一水平面內(nèi)做勻速圓周運動(圓錐擺).現(xiàn)使小球改到一個更高一些的水平面上做勻速圓周運動,兩次金屬塊Q都靜止在桌面上的同一點,則后 41、一種情況與原來相比較,下面的判斷中正確的是 ( )
圖11-7
A.細(xì)線所受的拉力變小
B.小球P運動的角速度變大
C.Q受到桌面的靜摩擦力變大
D.Q受到桌面的支持力變大
式題 如圖11-8所示,一根長為l=1 m的細(xì)線一端系一質(zhì)量為m=1 kg的小球(可視為質(zhì)點),另一端固定在一光滑錐體頂端,錐面與豎直方向的夾角為θ=37°.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8,結(jié)果可用根式表示)
(1)若要使小球剛好離開錐面,則小球的角速度ω0至少為多大?
(2)若細(xì)線與豎直方向的夾角為60°,則小球的角速度ω'為多大?
圖11-8
42、
■ 方法技巧
圓錐擺、火車轉(zhuǎn)彎、汽車轉(zhuǎn)彎、飛機在空中盤旋、開口向上的光滑圓錐體內(nèi)小球繞豎直軸線的圓周運動等,都是水平面內(nèi)圓周運動的典型實例,其受力特點是合力沿水平方向指向軌跡內(nèi)側(cè).解答此類問題的關(guān)鍵:(1)確定做圓周運動的物體所處的平面(水平面);(2)準(zhǔn)確分析向心力的來源及方向(水平指向圓心);(3)求出軌道半徑;(4)列出動力學(xué)方程求解.
考向三 圓周運動與平拋運動的綜合問題
3 (多選)[2017·廈門質(zhì)檢] 如圖11-9所示,置于圓形水平轉(zhuǎn)臺邊緣的小物塊隨轉(zhuǎn)臺加速轉(zhuǎn)動,當(dāng)轉(zhuǎn)速達(dá)到某一數(shù)值時,物塊恰好滑離轉(zhuǎn)臺開始做平拋運動.現(xiàn) 43、測得轉(zhuǎn)臺半徑R=0.5 m,離水平地面的高度H=0.8 m,物塊平拋落地過程水平位移的大小s=0.4 m.設(shè)物塊所受的最大靜摩擦力等于滑動摩擦力,重力加速度g取10 m/s2.求:
(1)物塊做平拋運動的初速度大小v0;
(2)物塊與轉(zhuǎn)臺間的動摩擦因數(shù)μ.
圖11-9
■ 規(guī)律總結(jié)
解答圓周運動與平拋運動綜合問題時的常用技巧
(1)審題中尋找類似“剛好”“取值范圍”“最大(小)”等字眼,看題述過程是否存在臨界(極值)問題.
(2)解決臨界(極值)問題的一般思路,首先要考慮達(dá)到臨界條件時物體所處的狀態(tài),其次分析該狀態(tài)下物體的 44、受力特點,最后結(jié)合圓周運動知識,列出相應(yīng)的動力學(xué)方程綜合分析.
(3)注意圓周運動的周期性,看是否存在多解問題.
(4)要檢驗結(jié)果的合理性,看是否與實際相矛盾.
考點三 豎直面內(nèi)的圓周運動問題
在僅有重力場的豎直面內(nèi)的圓周運動是典型的非勻速圓周運動,對于物體在豎直平面內(nèi)做圓周運動的問題,中學(xué)物理只研究物體通過最高點和最低點的情況,高考中涉及圓周運動的知識點大多是臨界問題,其中豎直面內(nèi)的線—球模型、桿—球模型中圓周運動的臨界問題出現(xiàn)的頻率非常高.下面是豎直面內(nèi)兩個常見模型的比較.
模型
線—球模型
桿—球模型
模型說明
用線或光滑圓形軌道內(nèi)側(cè)束縛的小球在豎直面內(nèi)繞固定點 45、做圓周運動
用桿或環(huán)形管內(nèi)光滑軌道束縛的小球在豎直面內(nèi)的圓周運動
模型圖示
臨界條件
小球到達(dá)最高點時重力剛好提供做圓周運動的向心力,即mg=m,式中的v0是小球通過最高點的臨界速度,v0=.
①當(dāng)v=v0時,線對小球的作用力為零;
②當(dāng)v 46、
取豎直向下為正方向
取豎直向下為正方向
考向一 桿—球模型
4 [2017·煙臺模擬] 一輕桿一端固定質(zhì)量為m的小球,以另一端O為圓心,使小球在豎直面內(nèi)做半徑為R的圓周運動,如圖11-10所示,重力加速度為g.下列說法正確的是 ( )
圖11-10
A.小球過最高點時,桿所受到的彈力可以等于零
B.小球過最高點的最小速度是
C.小球過最高點時,桿對球的作用力一定隨速度增大而增大
D.小球過最高點時,桿對球的作用力一定隨速度增大而減小
式題 如圖11-11所示,小球在豎直放置的光滑圓形管道內(nèi)做圓周運動,內(nèi)側(cè)壁半徑為R,小球半徑為r,重力加速度為g.下列說法正確的 47、是 ( )
圖11-11
A.小球通過最高點時的最小速度vmin=
B.小球通過最高點時的最小速度vmin=0
C.小球在水平線ab以下的管道中運動時,內(nèi)側(cè)管壁對小球一定有作用力
D.小球在水平線ab以上的管道中運動時,外側(cè)管壁對小球一定有作用力
考向二 線—球模型
5 [2017·福建質(zhì)檢] 如圖11-12所示,長均為L的兩根輕繩一端共同系住質(zhì)量為m的小球,另一端分別固定在等高的A、B兩點,A、B兩點間的距離也為L.重力加速度大小為g.現(xiàn)使小球在豎直平面內(nèi)以AB為軸做圓周運動,若小球在最高點速率為v時,兩根繩的拉力恰好均為零,則小球在最高點速率為2v時,每根繩的拉力大小為 48、( )
圖11-12
A.mg
C.3mg D.2mg
式題 [2017·撫順模擬] 如圖11-13所示,豎直環(huán)A半徑為r,固定在木板B上,木板B放在水平地面上,B的左、右兩側(cè)各有一擋板固定在地面上,使B不能左右運動,在環(huán)的最低點靜放一小球C,A、B、C的質(zhì)量均為m.現(xiàn)給小球一水平向右的瞬時速度v,小球會在環(huán)內(nèi)側(cè)做圓周運動,為保證小球能通過環(huán)的最高點,且不會使環(huán)豎直向上跳起(不計小球與環(huán)之間的摩擦阻力),則瞬時速度v必須滿足 ( )
圖11-13
A.最小值為
C.最小值為
■ 建模點撥
求解豎直平面內(nèi)圓周運動問題的思路
(1)定 49、模型:首先判斷是線—球模型還是桿—球模型.
(2)確定臨界點:v臨界=,對線—球模型來說是能否通過最高點的臨界點,而對桿—球模型來說是FN表現(xiàn)為支持力還是拉力的臨界點.
(3)研究狀態(tài):通常情況下豎直平面內(nèi)的圓周運動只涉及最高點和最低點的運動情況.
(4)受力分析:對物體在最高點或最低點時進(jìn)行受力分析,根據(jù)牛頓第二定律列出方程,F合=F向.
(5)過程分析:應(yīng)用動能定理或機械能守恒定律將初、末兩個狀態(tài)聯(lián)系起來列方程.
第12講 萬有引力與天體運動
一、開普勒三定律
1.開普勒第一定律:所有的行星繞太陽運動的軌道都是橢圓,太陽處在所有橢圓的一個 上.?
2.開普勒第 50、二定律:對于每一個行星而言,太陽和行星的連線在相等的時間內(nèi)掃過的 相等.?
3.開普勒第三定律:所有行星的軌道的 的三次方跟 的二次方的比值都相等.?
二、萬有引力定律
1.內(nèi)容:自然界中任何兩個物體都互相吸引,引力的大小與物體的質(zhì)量的乘積成 ,與它們之間距離的二次方成 .?
2.公式: (其中引力常量G=6.67×10-11 N·m2/ kg2).?
3.適用條件:公式適用于質(zhì)點之間以及均勻球體之間的相互作用,對均勻球體來說,r是兩球心間的距離.
三、天體運動問題的分析
1.運動學(xué)分析:將天體或衛(wèi)星的運動看成 運動.?
2.動 51、力學(xué)分析:(1)由萬有引力提供 ,即F向=Gr.(2)在星球表面附近的物體所受的萬有引力近似等于 ,即G=mg(g為星球表面的重力加速度).?
【思維辨析】
(1)牛頓利用扭秤實驗裝置比較準(zhǔn)確地測出了引力常量. ( )
(2)行星在橢圓軌道上運行速率是變化的,離太陽越遠(yuǎn),運行速率越小. ( )
(3)近地衛(wèi)星距離地球最近,環(huán)繞速度最小. ( )
(4)地球同步衛(wèi)星根據(jù)需要可以定點在北京正上空. ( )
(5)極地衛(wèi)星通過地球兩極,且始終和地球某一經(jīng)線平面重合. ( )
(6)發(fā)射火星探測器的速度必須大于11.2 km/s. ( )
考點一 開普勒定律 52、與行星運動
1 [2016·全國卷Ⅲ] 關(guān)于行星運動的規(guī)律,下列說法符合史實的是 ( )
A.開普勒在牛頓定律的基礎(chǔ)上,導(dǎo)出了行星運動的規(guī)律
B.開普勒在天文觀測數(shù)據(jù)的基礎(chǔ)上,總結(jié)出了行星運動的規(guī)律
C.開普勒總結(jié)出了行星運動的規(guī)律,找出了行星按照這些規(guī)律運動的原因
D.開普勒總結(jié)出了行星運動的規(guī)律,發(fā)現(xiàn)了萬有引力定律
式題 (多選)[2017·武漢調(diào)研] 水星或金星運行到地球和太陽之間,且三者幾乎排成一條直線的現(xiàn)象,天文學(xué)稱為“行星凌日”.已知地球的公轉(zhuǎn)周期為365天,若將水星、金星和地球的公轉(zhuǎn)軌道視為同一平面內(nèi)的圓軌道,理論計算得到水星相鄰兩次凌日的時間間隔為116天,金星相 53、鄰兩次凌日的時間間隔為584天,則下列判斷合理的是 ( )
A.地球的公轉(zhuǎn)周期大約是水星的2倍
B.地球的公轉(zhuǎn)周期大約是金星的1.6倍
C.金星的公轉(zhuǎn)軌道半徑大約是水星的3倍
D.實際上水星、金星和地球的公轉(zhuǎn)軌道平面存在一定的夾角,所以水星或金星相鄰兩次凌日的實際時間間隔均大于題干所給數(shù)據(jù)
■ 要點總結(jié)
對開普勒行星運動定律的理解:(1)行星繞太陽的運動通常按圓軌道處理,若按橢圓軌道處理,則利用其半長軸進(jìn)行計算.(2)開普勒行星運動定律也適用于其他天體,例如月球、衛(wèi)星繞地球的運動.(3)開普勒第三定律=k中,k值只與中心天體的質(zhì)量有關(guān),不同的中心天體對應(yīng)的k值不同.
考點二 萬 54、有引力及其與重力的關(guān)系
2 (多選)[2017·西安模擬] 歐洲航天局的第一枚月球探測器——“智能1號”環(huán)繞月球沿橢圓軌道運動,用m表示它的質(zhì)量,h表示它在近月點的高度,ω表示它在近月點的角速度,a表示它在近月點的加速度,R表示月球的半徑,g表示月球表面處的重力加速度.忽略其他星球?qū)Α爸悄?號”的影響,則它在近月點所受月球?qū)λ娜f有引力的大小等于 ( )
A.ma B.m
C.m(R+h)ω2 D.m
■ 題根分析
1.萬有引力與重力的關(guān)系
地球?qū)ξ矬w的萬有引力F表現(xiàn)為兩個效果:一是重力mg,二是提供物體隨地球自轉(zhuǎn)的向心力F向,如圖12-1所 55、示.
圖12-1
(1)在赤道處:G=mg1+mω2R.
(2)在兩極處:G=mg2.
(3)在一般位置:萬有引力G等于重力mg與向心力F向的矢量和.
越靠近南、北兩極,g值越大,由于物體隨地球自轉(zhuǎn)所需的向心力較小,常認(rèn)為萬有引力近似等于重力,即G=mg.
2.星體表面及上空的重力加速度(以地球為例)
(1)在地球表面附近的重力加速度g(不考慮地球自轉(zhuǎn)):
mg=G,得g=.
(2)在地球上空距離地心r=R+h處的重力加速度為g':
mg'=G,得g'=,
所以.
■ 變式網(wǎng)絡(luò)
式題1 (多選)[2017·山東淄博實驗中學(xué)診測] 為了迎接太空時代的到來,美國 56、國會通過一項計劃:在2050年前建造成太空升降機,就是把長繩的一端擱置在地球的衛(wèi)星上,另一端系住升降機,放開繩,升降機能到達(dá)地球上,科學(xué)家可以控制衛(wèi)星上的電動機把升降機拉到衛(wèi)星上.已知地球表面的重力加速度g=10 m/s2,地球半徑R=6400 km,地球自轉(zhuǎn)周期為24 h.某宇航員在地球表面測得體重為800 N,他隨升降機垂直地面上升,某時刻升降機的加速度為10 m/s2,方向豎直向上,這時此人再次測得體重為850 N,忽略地球公轉(zhuǎn)的影響,根據(jù)以上數(shù)據(jù) ( )
A.可以求出升降機此時所受的萬有引力大小
B.可以求出此時宇航員的動能
C.可以求出升降機此時距地面的高度
D.如果把繩的 57、一端擱置在同步衛(wèi)星上,可知繩至少有多長
式題2 假設(shè)地球是一半徑為R、質(zhì)量分布均勻的球體,一礦井深度為d.已知質(zhì)量分布均勻的球殼對殼內(nèi)物體的引力為零,則礦井底部和地面處的重力加速度大小之比為 ( )
A.1-
C.
式題3 [2017·安徽安慶模擬] 人類對自己賴以生存的地球的研究是一個永恒的主題.我國南極科學(xué)考察隊在地球的南極用彈簧測力計稱得某物體重為P,在回國途中經(jīng)過赤道時用彈簧測力計稱得同一物體重為0.9P.若已知地球自轉(zhuǎn)周期為T,引力常量為G,假設(shè)地球是質(zhì)量均勻分布的球體,則由以上物理量可以求得 ( )
A.物體的質(zhì)量m B.地球的半徑R
C.地球的質(zhì)量M D.地球的密 58、度ρ
考點三 天體質(zhì)量及密度的計算
(1)利用衛(wèi)(行)星繞中心天體做勻速圓周運動求中心天體的質(zhì)量
計算天體的質(zhì)量和密度問題的關(guān)鍵是明確中心天體對它的衛(wèi)星(或行星)的引力就是衛(wèi)星(或行星)繞中心天體做勻速圓周運動的向心力.由Gr,解得M=;ρ=,R為中心天體的半徑,若為近地衛(wèi)星,則R=r,有ρ=.由上式可知,只要用實驗方法測出衛(wèi)星(或行星)做圓周運動的半徑r及運行周期T,就可以算出中心天體的質(zhì)量M.若再知道中心天體的半徑,則可算出中心天體的密度.
(2)利用天體表面的重力加速度g和天體半徑R,可得天體質(zhì)量M=,天體密度ρ=.
3 [2017·濰坊模擬] 宇航員在地球表面上某高度處將一小 59、球水平拋出,使小球產(chǎn)生一定的水平位移,當(dāng)他登陸一半徑為地球半徑2倍的星球后,在該星球表面上相同高度處以和在地球上完全相同的方式水平拋出小球,測得小球的水平位移大約是在地球上的4倍,由此宇航員估算該星球的質(zhì)量M星約為(M為地球的質(zhì)量) ( )
A.M B.2M
C.M D.4M
式題 [2017·南通質(zhì)檢] “嫦娥一號”是我國首次發(fā)射的探月衛(wèi)星,它在距月球表面高度為h的圓形軌道上運行,運行周期為T.已知引力常量為G,月球的半徑為R.利用以上數(shù)據(jù)估算月球質(zhì)量的表達(dá)式為 ( )
A.
C.
■ 規(guī)律總結(jié)
天體質(zhì)量和密度的估算問題是高考命題熱點,解答此類問題時,首先要掌握基本方法(兩 60、個等式:①由萬有引力提供向心力;②天體表面物體受到的重力近似等于萬有引力),其次是記住常見問題的結(jié)論,主要分兩種情況:(1)利用衛(wèi)星的軌道半徑r和周期T,可得中心天體的質(zhì)量M=,并據(jù)此進(jìn)一步得到該天體的密度ρ=(R為中心天體的半徑),尤其注意當(dāng)r=R時,ρ=.(2)利用天體表面的重力加速度g和天體半徑R,可得天體質(zhì)量M=,天體密度ρ=.
考點四 黑洞與多星系統(tǒng)
1.雙星系統(tǒng)
系統(tǒng)
可視天體繞黑洞做圓周運動
黑洞與可視天體構(gòu)成的雙星系統(tǒng)
兩顆可視天體構(gòu)成的雙星系統(tǒng)
圖示
向心力的來源
黑洞對可視天體的萬有引力
彼此給對方的萬有引力
彼此給對方的萬有引力
61、
2.多星系統(tǒng)
系統(tǒng)
三星系統(tǒng)(正三角形排列)
三星系統(tǒng)(直線等間距排列)
四星系統(tǒng)
圖示
向心力的來源
另外兩星球?qū)ζ淙f有引力的合力
另外兩星球?qū)ζ淙f有引力的合力
另外三星球?qū)ζ淙f有引力的合力
4 [2017·蘭州診斷考試] 北京時間2016年2月11日23:30左右,激光干涉引力波天文臺負(fù)責(zé)人宣布,人類首次發(fā)現(xiàn)了引力波.它來源于距地球之外13億光年的兩個黑洞(質(zhì)量分別為26個和39個太陽質(zhì)量)互相繞轉(zhuǎn)最后合并的過程.合并前兩個黑洞互相繞轉(zhuǎn)形成一個雙星系統(tǒng),關(guān)于此雙星系統(tǒng),下列說法正確的是 ( )
A.兩個黑洞繞行的角速度相等
B.兩個黑洞繞行的 62、線速度大小相等
C.兩個黑洞繞行的向心加速度大小相等
D.質(zhì)量大的黑洞旋轉(zhuǎn)的半徑大
式題 (多選)宇宙中存在一些離其他恒星較遠(yuǎn)的三星系統(tǒng),其中有一種三星系統(tǒng)如圖12-2所示,三顆質(zhì)量均為m的星體位于等邊三角形的三個頂點,三角形邊長為R,忽略其他星體對它們的引力作用,三星在同一平面內(nèi)繞三角形中心O做勻速圓周運動,引力常量為G,則 ( )
圖12-2
A.每顆星做圓周運動的線速度為
B.每顆星做圓周運動的角速度為
C.每顆星做圓周運動的周期為2π
D.每顆星做圓周運動的向心加速度與三星的質(zhì)量無關(guān)
■ 方法技巧
多星問題的解題技巧
(1)挖掘一個隱含條件:在圓周上運 63、動的天體的角速度(或周期)相等.
(2)重視向心力來源分析:雙星做勻速圓周運動的向心力由它們之間的萬有引力提供,三星或多星做圓周運動的向心力往往是由多個星的萬有引力的合力提供.
(3)區(qū)別兩個長度關(guān)系:圓周運動的軌道半徑和萬有引力公式中兩天體的距離是不同的,不能誤認(rèn)為一樣.
人造衛(wèi)星 宇宙速度
熱點一 人造衛(wèi)星圓周軌道運行規(guī)律
環(huán)繞同一天體的不同軌道高度的衛(wèi)星運行參量比較
由Gr=man可推導(dǎo)出:
1 (多選)[2017·浙江麗水模擬] 設(shè)地球的半徑為R0,質(zhì)量為m的衛(wèi)星在距地面2R0高處做勻速圓周運動,地面的重力加速度為g,則下列說法正確的是 ( )
A.衛(wèi)星 64、的線速度為
B.衛(wèi)星的角速度為
C.衛(wèi)星的向心加速度為
D.衛(wèi)星的周期為2π
式題 [2017·連云港檢測] 我國曾成功發(fā)射“一箭20星”,在火箭上升的過程中分批釋放衛(wèi)星,使衛(wèi)星分別進(jìn)入離地200~600 km高的軌道.軌道均視為圓軌道,下列說法正確的是 ( )
A.離地近的衛(wèi)星比離地遠(yuǎn)的衛(wèi)星運動速率小
B.離地近的衛(wèi)星比離地遠(yuǎn)的衛(wèi)星向心加速度小
C.上述衛(wèi)星的角速度均大于地球自轉(zhuǎn)的角速度
D.同一軌道上的衛(wèi)星受到的萬有引力大小一定相等
■ 規(guī)律總結(jié)
人造衛(wèi)星問題的解題技巧
(1)一個模型
衛(wèi)星的運動可簡化為質(zhì)點的勻速圓周運動模型.
(2)兩組公式
①Gr= 65、man
②mg=G(g為星體表面處的重力加速度)
(3)a、v、ω、T均與衛(wèi)星的質(zhì)量無關(guān),只由軌道半徑和中心天體質(zhì)量共同決定,所有參量的比較,最終歸結(jié)到半徑的比較.
熱點二 赤道上的物體、同步衛(wèi)星和近地衛(wèi)星
1.近地衛(wèi)星及第一宇宙速度推導(dǎo)
方法一:由G=7.9×103 m/s.
方法二:由mg=m=7.9×103 m/s.
第一宇宙速度是發(fā)射人造衛(wèi)星的最小速度,也是人造衛(wèi)星的最大環(huán)繞速度,此時它的運行周期最短,Tmin=2π=5075 s≈85 min.
2.地球同步衛(wèi)星的特點
(1)軌道平面一定:軌道平面和赤道平面重合.
(2)周期一定:與地球自轉(zhuǎn)周期相同,即T=24 66、h=86 400 s.
(3)角速度一定:與地球自轉(zhuǎn)的角速度相同.
(4)高度一定:據(jù)G=4.23×104 km,衛(wèi)星離地面高度h=r-R≈6R(為恒量).
(5)繞行方向一定:與地球自轉(zhuǎn)的方向一致.
2 (多選)[2017·重慶調(diào)研] 如圖Z4-1所示,a為地球赤道上的物體,b為沿地球表面附近做勻速圓周運動的人造衛(wèi)星,c為地球同步衛(wèi)星.關(guān)于a、b、c做勻速圓周運動的說法中正確的是 ( )
圖Z4-1
A.地球?qū)、c兩衛(wèi)星的萬有引力提供了向心力,因此只有a受重力,b、c兩衛(wèi)星不受重力
B.周期關(guān)系為Ta=Tc>Tb
C.線速度的大小關(guān)系為va
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強對文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見問題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說話方式
- 汽車銷售績效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩