2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 4.5兩角和與差的正弦、余弦、正切教案 理 新人教A版

上傳人:xt****7 文檔編號(hào):105150808 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):18 大小:255.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 4.5兩角和與差的正弦、余弦、正切教案 理 新人教A版_第1頁
第1頁 / 共18頁
2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 4.5兩角和與差的正弦、余弦、正切教案 理 新人教A版_第2頁
第2頁 / 共18頁
2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 4.5兩角和與差的正弦、余弦、正切教案 理 新人教A版_第3頁
第3頁 / 共18頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 4.5兩角和與差的正弦、余弦、正切教案 理 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 4.5兩角和與差的正弦、余弦、正切教案 理 新人教A版(18頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 4.5兩角和與差的正弦、余弦、正切教案 理 新人教A版 xx高考會(huì)這樣考 1.利用兩角和與差的正弦、余弦、正切公式進(jìn)行三角變換;2.利用三角變換討論三角函數(shù)的圖象和性質(zhì). 復(fù)習(xí)備考要這樣做 1.牢記和差公式、倍角公式,把握公式特征;2.靈活使用(正用、逆用、變形用)兩角和與差的正弦、余弦、正切公式進(jìn)行三角變換,三角變換中角的變換技巧是解題的關(guān)鍵. 1. 兩角和與差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (Cα-β) cos(α+β)=cos_αcos_β-sin_αsin_β (Cα+β) sin

2、(α-β)=sin_αcos_β-cos_αsin_β (Sα-β) sin(α+β)=sin_αcos_β+cos_αsin_β (Sα+β) tan(α-β)= (Tα-β) tan(α+β)= (Tα+β) 2. 二倍角公式 sin 2α=2sin_αcos_α; cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; tan 2α=. 3. 在準(zhǔn)確熟練地記住公式的基礎(chǔ)上,要靈活運(yùn)用公式解決問題:如公式的正用、逆用和變形用等.如Tα±β可變形為 tan α±tan β=tan(α±β)(1?tan_αtan_β), tan αtan β=1-=-1

3、. 4. 函數(shù)f(α)=acos α+bsin α(a,b為常數(shù)),可以化為f(α)= sin(α+φ)或f(α)=cos(α-φ),其中φ可由a,b的值唯一確定. [難點(diǎn)正本 疑點(diǎn)清源] 三角變換中的“三變” (1)變角:目的是溝通題設(shè)條件與結(jié)論中所涉及的角,其手法通常是“配湊”. (2)變名:通過變換函數(shù)名稱達(dá)到減少函數(shù)種類的目的,其手法通常有“切化弦”、“升冪與降冪”等. (3)變式:根據(jù)式子的結(jié)構(gòu)特征進(jìn)行變形,使其更貼近某個(gè)公式或某個(gè)期待的目標(biāo),其手法通常有“常值代換”、“逆用變用公式”、“通分約分”、“分解與組合”、“配方與平方”等. 1. 已知sin(α+β)=,

4、sin(α-β)=-,則的值為_______. 答案  解析 由sin(α+β)=sin αcos β+cos αsin β=, sin(α-β)=sin αcos β-cos αsin β=-, 得sin αcos β=,cos αsin β=, 所以==. 2. 函數(shù)f(x)=2sin x(sin x+cos x)的單調(diào)增區(qū)間為______________________. 答案  (k∈Z) 解析 f(x)=2sin2x+2sin xcos x =2×+sin 2x=sin 2x-cos 2x+1 =sin+1, 由-+2kπ≤2x-≤+2kπ,k∈Z, 得-+k

5、π≤x≤+kπ,k∈Z. 所以所求區(qū)間為 (k∈Z). 3. (xx·江蘇)設(shè)α為銳角,若cos=,則 sin的值為________. 答案  解析 ∵α為銳角且cos=, ∴sin=. ∴sin=sin =sin 2cos -cos 2sin =sincos- =××- =-=. 4. (xx·江西)若=,則tan 2α等于 (  ) A.- B. C.- D. 答案 B 解析 由=,等式左邊分子、分母同除cos α得,=,解得tan α=-3,則tan 2α==. 5. (xx·遼寧)設(shè)sin(+θ)=,則sin 2θ等于

6、 (  ) A.- B.- C. D. 答案 A 解析 sin(+θ)=(sin θ+cos θ)=, 將上式兩邊平方,得(1+sin 2θ)=,∴sin 2θ=-. 題型一 三角函數(shù)式的化簡、求值問題 例1 (1)化簡: ·; (2)求值:[2sin 50°+sin 10°(1+tan 10°)]·. 思維啟迪:切化弦;注意角之間的聯(lián)系及轉(zhuǎn)化. 解 (1)· =· =· =·=. (2)原式=·sin 80° =×cos 10° =2[sin 50°·cos 10°+sin 10°·cos(60°-10°)] =2sin

7、(50°+10°)=2×=. 探究提高 (1)三角函數(shù)式的化簡要遵循“三看”原則,一看角,二看名,三看式子結(jié)構(gòu)與特征. (2)對于給角求值問題,往往所給角都是非特殊角,解決這類問題的基本思路有 ①化為特殊角的三角函數(shù)值; ②化為正、負(fù)相消的項(xiàng),消去求值; ③化分子、分母出現(xiàn)公約數(shù)進(jìn)行約分求值. 在△ABC中,已知三個(gè)內(nèi)角A,B,C成等差數(shù)列,則tan +tan +tan tan 的值為________. 答案  解析 因?yàn)槿齻€(gè)內(nèi)角A,B,C成等差數(shù)列,且A+B+C=π,所以A+C=,=,tan =, 所以tan +tan +tan tan =tan+tan tan

8、=+tan tan =. 題型二 三角函數(shù)的給角求值與給值求角問題 例2 (1)已知0<β<<α<π,且cos=-,sin=,求cos(α+β)的值; (2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,求2α-β的值. 思維啟迪:(1)拆分角:=-,利用平方關(guān)系分別求各角的正弦、余弦. (2)2α-β=α+(α-β);α=(α-β)+β. 解 (1)∵0<β<<α<π, ∴-<-β<,<α-<π, ∴cos==, sin==, ∴cos =cos =coscos+sinsin =×+×=, ∴cos(α+β)=2cos2-1=2×-1=-. (

9、2)∵tan α=tan[(α-β)+β]= ==>0,∴0<α<, 又∵tan 2α===>0, ∴0<2α<, ∴tan(2α-β)===1. ∵tan β=-<0, ∴<β<π,-π<2α-β<0,∴2α-β=-. 探究提高 (1)注意變角-=,可先求cos 或sin 的值.(2)先由tan α=tan[(α-β)+β],求tan α的值,再求tan 2α的值,這種方法的優(yōu)點(diǎn)是可確定2α的取值范圍.(3)通過求角的某種三角函數(shù)值來求角,在選取函數(shù)時(shí),遵照以下原則:①已知正切函數(shù)值,選正切函數(shù);②已知正、余弦函數(shù)值,選正弦或余弦函數(shù);若角的范圍是,選正、余弦皆可;若角的范圍是

10、(0,π),選余弦較好;若角的范圍為,選正弦較好. (4)解這類問題的一般步驟: ①求角的某一個(gè)三角函數(shù)值; ②確定角的范圍; ③根據(jù)角的范圍寫出所求的角. 已知cos α=,cos(α-β)=,且0<β<α<,求β. 解 ∵0<β<α<,∴0<α-β<. 又∵cos(α-β)=,cos α=,0<β<α<, ∴sin α==, ∴sin(α-β)==, ∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =×+×=. ∵0<β<,∴β=. 題型三 三角變換的簡單應(yīng)用 例3 已知f(x)=sin2x-2sin·sin

11、. (1)若tan α=2,求f(α)的值; (2)若x∈,求f(x)的取值范圍. 思維啟迪:(1)化簡f(x),由tan α=2代入求f(α);(2)化成f(x)=Asin(ωx+φ)+b的形式,求f(x)的取值范圍. 解 (1)f(x)=(sin2x+sin xcos x)+2sin· cos =+sin 2x+sin =+(sin 2x-cos 2x)+cos 2x =(sin 2x+cos 2x)+. 由tan α=2,得sin 2α===. cos 2α===-. 所以,f(α)=(sin 2α+cos 2α)+=. (2)由(1)得f(x)=(sin 2x+

12、cos 2x)+ =sin+. 由x∈,得≤2x+≤. ∴-≤sin≤1,0≤f(x)≤, 所以f(x)的取值范圍是. 探究提高 (1)將f(x)化簡是解題的關(guān)鍵,本題中巧妙運(yùn)用“1”的代換技巧,將sin 2α,cos 2α化為正切tan α,為第(1)問鋪平道路. (2)把形如y=asin x+bcos x化為y=sin(x+φ),可進(jìn)一步研究函數(shù)的周期、單調(diào)性、最值與對稱性. 已知函數(shù)f(x)=sin+ 2sin2 (x∈R). (1)求函數(shù)f(x)的最小正周期; (2)求使函數(shù)f(x)取得最大值時(shí)x的集合. 解 (1)因?yàn)閒(x)=sin+1-cos 2 =2[

13、sin-cos]+1 =2sin+1=2sin+1, 所以f(x)的最小正周期T==π. (2)當(dāng)f(x)取得最大值時(shí),sin=1, 此時(shí)2x-=2kπ+(k∈Z),即x=kπ+ (k∈Z), 所以所求x的集合為{x|x=kπ+,k∈Z}. 利用三角變換研究三角函數(shù)的性質(zhì) 典例:(12分)(xx·北京)已知函數(shù)f(x)=4cos x· sin-1. (1)求f(x)的最小正周期; (2)求f(x)在區(qū)間上的最大值和最小值. 審題視角 (1)問首先化為形如y=Asin(ωx+φ)的形式,由T=求得;(2)問由x∈求得ωx+φ的范圍,從而求得最值. 規(guī)范解答

14、解 (1)因?yàn)閒(x)=4cos xsin-1 =4cos x-1 =sin 2x+2cos2x-1=sin 2x+cos 2x =2sin,[4分] 所以f(x)的最小正周期為π.[6分] (2)因?yàn)椋躼≤, 所以-≤2x+≤.[8分] 于是,當(dāng)2x+=, 即x=時(shí),f(x)取得最大值2;[10分] 當(dāng)2x+=-,即x=-時(shí),f(x)取得最小值-1.[12分] 答題模板 第一步:將f(x)化為asin x+bcos x的形式. 第二步:構(gòu)造f(x)=(sin x·+ cos x·). 第三步:和角公式逆用f(x)=sin(x+φ) (其中 φ為輔助角)

15、. 第四步:利用f(x)=sin(x+φ)研究三角函數(shù)的性質(zhì). 第五步:反思回顧,查看關(guān)鍵點(diǎn)、易錯(cuò)點(diǎn)和答題規(guī)范. 溫馨提醒 (1)在本題的解法中,運(yùn)用了二倍角的正、余弦公式,還引入了輔助角,技巧性較強(qiáng).值得強(qiáng)調(diào)的是輔助角公式asin α+bcos α=sin(α+φ)(其中tan φ=),或asin α+bcos α= cos(α-φ) (其中tan φ=),在歷年高考中使用頻率是相當(dāng)高的,幾乎年年使用到、考查到,應(yīng)特別加以關(guān)注. (2)本題的易錯(cuò)點(diǎn)是想不到引入輔助角或引入錯(cuò)誤. 方法與技巧 1. 巧用公式變形: 和差角公式變形:tan x±tan y=tan(x±y)·(1

16、?tan xtan y); 倍角公式變形:降冪公式cos2α=,sin2α=; 配方變形:1±sin α=2,1+cos α=2cos2,1-cos α=2sin2. 2. 利用輔助角公式求最值、單調(diào)區(qū)間、周期.由y=asin α+bcos α=sin(α+φ)(其中tan φ=)有≥|y|. 3. 重視三角函數(shù)的“三變”:“三變”是指“變角、變名、變式”;變角:對角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等.在解決求值、化簡、證明問題時(shí),一般是觀察角度、函數(shù)名、所求(或所證明)問題的整體形式中的差異,再選擇適

17、當(dāng)?shù)娜枪胶愕茸冃危? 4. 已知和角函數(shù)值,求單角或和角的三角函數(shù)值的技巧:把已知條件的和角進(jìn)行加減或二倍角后再加減,觀察是不是常數(shù)角,只要是常數(shù)角,就可以從此入手,給這個(gè)等式兩邊求某一函數(shù)值,可使所求的復(fù)雜問題簡單化. 5. 熟悉三角公式的整體結(jié)構(gòu),靈活變換.本節(jié)要重視公式的推導(dǎo),既要熟悉三角公式的代數(shù)結(jié)構(gòu),更要掌握公式中角和函數(shù)名稱的特征,要體會(huì)公式間的聯(lián)系,掌握常見的公式變形,倍角公式應(yīng)用是重點(diǎn),涉及倍角或半角的都可以利用倍角公式及其變形. 失誤與防范 1.運(yùn)用公式時(shí)要注意審查公式成立的條件,要注意和、差、倍角的相對性,要注意升次、降次的靈活運(yùn)用,要注意“1”的各種變通. 2

18、.在(0,π)范圍內(nèi),sin(α+β)=所對應(yīng)的角α+β不是唯一的. 3.在三角求值時(shí),往往要估計(jì)角的范圍后再求值. A組 專項(xiàng)基礎(chǔ)訓(xùn)練 (時(shí)間:35分鐘,滿分:57分) 一、選擇題(每小題5分,共20分) 1. (xx·江西)若tan θ+=4,則sin 2θ等于 (  ) A. B. C. D. 答案 D 解析 由tan θ+=+==4, 得sin θcos θ=, 則sin 2θ=2sin θcos θ=2×=. 2. (xx·大綱全國)已知α為第二象限角,sin α+cos α=,則cos 2α等于 (  ) A.-

19、 B.- C. D. 答案 A 解析 方法一 ∵sin α+cos α=,∴(sin α+cos α)2=,∴2sin αcos α=-,即sin 2α=-. 又∵α為第二象限角且sin α+cos α=>0, ∴2kπ+<α<2kπ+π(k∈Z), ∴4kπ+π<2α<4kπ+π(k∈Z), ∴2α為第三象限角, ∴cos 2α=-=-. 方法二 由sin α+cos α=, 兩邊平方得1+2sin αcos α=, ∴2sin αcos α=-. ∵α為第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α= ==. 由得

20、 ∴cos 2α=2cos2α-1=-. 3. 已知α,β都是銳角,若sin α=,sin β=, 則α+β等于 (  ) A. B. C.和 D.-和- 答案 A 解析 由于α,β都為銳角,所以cos α==, cos β==. 所以cos(α+β)=cos α·cos β-sin α·sin β=, 所以α+β=. 4. (xx·福建)若α∈,且sin2α+cos 2α=,則tan α的值等于 (  ) A. B. C. D. 答案 D 解析 ∵α∈,且sin2α+cos 2α=, ∴sin2α+co

21、s2α-sin2α=,∴cos2α=, ∴cos α=或-(舍去), ∴α=,∴tan α=. 二、填空題(每小題5分,共15分) 5. cos275°+cos215°+cos 75°cos 15°的值為________. 答案  解析 由誘導(dǎo)公式及倍角公式, 得cos275°+cos215°+cos 75°cos 15° =sin215°+cos215°+sin 15°cos 15° =1+sin 30°=. 6. =________. 答案 -4 解析 原式= = == ==-4. 7. sin α=,cos β=,其中α,β∈,則α+β=________

22、____. 答案  解析 ∵α、β∈,∴α+β∈(0,π), ∴cos α=,sin β=, ∴cos(α+β)=×-×=0,∴α+β=. 三、解答題(共22分) 8. (10分)已知-=-2tan α,試確定使等式成立的α的取值集合. 解 因?yàn)椋? =- =- = =, 所以=-2tan α=-. 所以sin α=0或|cos α|=-cos α>0. 故α的取值集合為{α|α=kπ或2kπ+<α<2kπ+π或2kπ+π<α<2kπ+,k∈Z}. 9. (12分)已知α∈,且sin +cos =. (1)求cos α的值; (2)若sin(α-β)=-,β∈,

23、求cos β的值. 解 (1)因?yàn)閟in +cos =, 兩邊同時(shí)平方,得sin α=. 又<α<π,所以cos α=-. (2)因?yàn)?α<π,<β<π, 所以-π<-β<-,故-<α-β<. 又sin(α-β)=-,得cos(α-β)=. cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =-×+×=-. B組 專項(xiàng)能力提升 (時(shí)間:25分鐘,滿分:43分) 一、選擇題(每小題5分,共15分) 1. (xx·山東)若θ∈,sin 2θ=,則sin θ等于 (  ) A. B.

24、C. D. 答案 D 解析 ∵θ∈,∴2θ∈. ∴cos 2θ=-=-, ∴sin θ==. 2. 已知tan(α+β)=,tan=,那么tan等于 (  ) A. B. C. D. 答案 C 解析 因?yàn)棣粒拢溅粒拢? 所以α+=(α+β)-,所以 tan=tan ==. 3. 當(dāng)-≤x≤時(shí),函數(shù)f(x)=sin x+cos x的 (  ) A.最大值是1,最小值是-1 B.最大值是1,最小值是- C.最大值是2,最小值是-2 D.最大值是2,最小值是-1 答案 D 解析 f(x)=sin x+c

25、os x =2=2sin, 由-≤x≤,得-≤x+≤. 所以當(dāng)x+=時(shí),f(x)有最大值2, 當(dāng)x+=-時(shí),f(x)有最小值-1. 二、填空題(每小題5分,共15分) 4. 已知銳角α滿足cos 2α=cos,則sin 2α=________. 答案  解析 ∵α∈,∴2α∈(0,π),-α∈. 又cos 2α=cos, ∴2α=-α或2α+-α=0, ∴α=或α=-(舍),∴sin 2α=sin =. 5. 已知cos=,α∈,則=________. 答案  解析 ∵cos=(cos α+sin α)=, ∴sin α+cos α=, 1+2sin αcos

26、α=,2sin αcos α=, 1-2sin αcos α=,cos α-sin α=, = =(cos α-sin α)=. 6. 設(shè)x∈,則函數(shù)y=的最小值為________. 答案  解析 因?yàn)閥==, 所以令k=.又x∈, 所以k就是單位圓x2+y2=1的左半圓上的動(dòng)點(diǎn)P(-sin 2x,cos 2x)與定點(diǎn)Q(0,2)所成直線的斜率.又kmin=tan 60°=,所以函數(shù)y=的最小值為. 三、解答題 7. (13分)(xx·廣東)已知函數(shù)f(x)=2cos(其中ω>0,x∈R)的最小正周期為10π. (1)求ω的值; (2)設(shè)α,β∈,f=-,f =,求cos(α+β)的值. 解 (1)由T==10π得ω=. (2)由得 整理得 ∵α,β∈, ∴cos α==,sin β==. ∴cos(α+β)=cos αcosβ -sin αsin β =×-×=-.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!