《2022年人教A版高中數(shù)學(xué) 必修五 2-5 第1課時 等比數(shù)列的前n項和 教案》由會員分享,可在線閱讀,更多相關(guān)《2022年人教A版高中數(shù)學(xué) 必修五 2-5 第1課時 等比數(shù)列的前n項和 教案(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年人教A版高中數(shù)學(xué) 必修五 2-5 第1課時 等比數(shù)列的前n項和 教案教學(xué)目標(biāo)知識與技能:掌握等比數(shù)列的前n項和公式及公式證明思路;會用等比數(shù)列的前n項和公式解決有關(guān)等比數(shù)列的一些簡單問題。過程與方法:經(jīng)歷等比數(shù)列前n 項和的推導(dǎo)與靈活應(yīng)用,總結(jié)數(shù)列的求和方法,并能在具體的問題情境中發(fā)現(xiàn)等比關(guān)系建立數(shù)學(xué)模型、解決求和問題。情感態(tài)度與價值觀:在應(yīng)用數(shù)列知識解決問題的過程中,要勇于探索,積極進(jìn)取,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情和刻苦求是的精神。教學(xué)重點等比數(shù)列的前n項和公式推導(dǎo)教學(xué)難點靈活應(yīng)用公式解決有關(guān)問題教學(xué)過程.課題導(dǎo)入創(chuàng)設(shè)情境提出問題課本P62“國王對國際象棋的發(fā)明者的獎勵”.講授新課分析問題
2、如果把各格所放的麥粒數(shù)看成是一個數(shù)列,我們可以得到一個等比數(shù)列,它的首項是1,公比是2,求第一個格子到第64個格子各格所放的麥粒數(shù)總合就是求這個等比數(shù)列的前64項的和。下面我們先來推導(dǎo)等比數(shù)列的前n項和公式。1、 等比數(shù)列的前n項和公式: 當(dāng)時, 或 當(dāng)q=1時,當(dāng)已知, q, n 時用公式;當(dāng)已知, q, 時,用公式.公式的推導(dǎo)方法一:一般地,設(shè)等比數(shù)列它的前n項和是由得 當(dāng)時, 或 當(dāng)q=1時,公式的推導(dǎo)方法二:有等比數(shù)列的定義,根據(jù)等比的性質(zhì),有即 (結(jié)論同上)圍繞基本概念,從等比數(shù)列的定義出發(fā),運(yùn)用等比定理,導(dǎo)出了公式公式的推導(dǎo)方法三: (結(jié)論同上)解決問題有了等比數(shù)列的前n項和公式,就可以解決剛才的問題。由可得=。這個數(shù)很大,超過了。國王不能實現(xiàn)他的諾言。例題講解課本P56-57的例1、例2 例3解略1、等比數(shù)列前n項,前2n項,前3n項的和分別是Sn,S2n,S3n,求證:2、設(shè)a為常數(shù),求數(shù)列a,2a2,3a3,nan,的前n項和;(1)a=0時,Sn=0(2)a0時,若a=1,則Sn=1+2+3+n=若a1,Sn-aSn=a(1+a+an-1-nan),Sn=.課堂練習(xí)課本P58的練習(xí)1、2、3課本P61習(xí)題A組的第4、5題.課時小結(jié)等比數(shù)列求和公式:當(dāng)q=1時, 當(dāng)時, 或.課后作業(yè)課本P61習(xí)題A組的第1、2題課本P61習(xí)題A組的第6題