(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 解析幾何學(xué)案

上傳人:彩*** 文檔編號(hào):105842405 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):92 大?。?.37MB
收藏 版權(quán)申訴 舉報(bào) 下載
(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 解析幾何學(xué)案_第1頁(yè)
第1頁(yè) / 共92頁(yè)
(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 解析幾何學(xué)案_第2頁(yè)
第2頁(yè) / 共92頁(yè)
(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 解析幾何學(xué)案_第3頁(yè)
第3頁(yè) / 共92頁(yè)

下載文檔到電腦,查找使用更方便

118 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 解析幾何學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 解析幾何學(xué)案(92頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、專題四 解析幾何析考情明重點(diǎn)小題考情分析大題考情分析常考點(diǎn)1.雙曲線的漸近線、離心率及焦點(diǎn)問題(5年4考) 2.橢圓的離心率問題,橢圓與直線、雙曲線的綜合問題(5年3考)直線與圓錐曲線解答題是高考的熱點(diǎn)也是重點(diǎn)部分,主要涉及以下兩種考法:(1)直線與橢圓有關(guān)范圍、最值的綜合問題;(2)直線與拋物線有關(guān)范圍、最值的綜合問題.偶考點(diǎn)1.圓與不等式的交匯問題2.拋物線的焦點(diǎn)、準(zhǔn)線問題第一講 小題考法直線與圓考點(diǎn)(一)直 線 的 方 程主要考查直線方程、兩條直線的位置關(guān)系及三個(gè)距離公式的應(yīng)用.典例感悟典例(1)已知直線l1:x2ay10,l2:(a1)xay0,若l1l2,則實(shí)數(shù)a的值為()AB0C或

2、0 D2(2)已知點(diǎn)A(1,0),B(1,0),C(0,1),直線yaxb(a0)將ABC分割為面積相等的兩部分,則b的取值范圍是()A(0,1) B.C. D.(3)過直線l1:x2y30與直線l2:2x3y80的交點(diǎn),且到點(diǎn)P(0,4)距離為2的直線方程為_.解析(1)由l1l2得1(a)2a(a1),即2a23a0,解得a0或a.經(jīng)檢驗(yàn),當(dāng)a0或a時(shí)均有l(wèi)1l2,故選C.(2)易知BC所在直線的方程是xy1,由消去x,得y,當(dāng)a0時(shí),直線yaxb與x軸交于點(diǎn),結(jié)合圖形(圖略)知,化簡(jiǎn)得(ab)2a(a1),則a.a0,0,解得b.考慮極限位置,即當(dāng)a0時(shí),易得b1,故b的取值范圍是.(3

3、)由得l1與l2的交點(diǎn)為(1,2)當(dāng)所求直線斜率不存在,即直線方程為x1時(shí),顯然不滿足題意當(dāng)所求直線斜率存在時(shí),設(shè)所求直線方程為y2k(x1),即kxy2k0,點(diǎn)P(0,4)到直線的距離為2,2,k0或k.直線方程為y2或4x3y20.答案(1)C(2)B(3)y2或4x3y20方法技巧解決直線方程問題的2個(gè)關(guān)注點(diǎn)(1)求解兩條直線平行的問題時(shí),在利用A1B2A2B10建立方程求出參數(shù)的值后,要注意代入檢驗(yàn),排除兩條直線重合的情況(2)求直線方程時(shí)應(yīng)根據(jù)條件選擇合適的方程形式,同時(shí)要考慮直線斜率不存在的情況是否符合題意演練沖關(guān)1已知直線l的傾斜角為,直線l1經(jīng)過點(diǎn)A(3,2),B(a,1),且

4、l1與l垂直,直線l2:2xby10與直線l1平行,則ab()A4 B2 C0 D2解析:選B由題知,直線l的斜率為1,則直線l1的斜率為1,所以1,所以a4.又l1l2,所以1,b2,所以ab422,故選B.2(2018浙江名師預(yù)測(cè)卷)“m1”是“直線l1:mx(2m1)y10與直線l2:3xmy30垂直”的()A充分不必要條件 B必要不充分條件C充要條件 D既不充分也不必要條件解析:選A若直線l1:mx(2m1)y10與直線l2:3xmy30垂直,則3mm(2m1)0,即2m(m1)0,解得m0或m1,則“m1”是“直線l1:mx(2m1)y10與直線l2:3xmy30垂直”的充分不必要條

5、件故選A.3若直線l1:xay60與l2:(a2)x3y2a0平行,則l1與l2間的距離為()A. B. C. D.解析:選B由l1l2,得(a2)a13,且a2a36,解得a1,所以l1:xy60,l2:xy0,所以l1與l2間的距離為d.考點(diǎn)(二)圓 的 方 程主要考查圓的方程的求法,常涉及弦長(zhǎng)公式、直線與圓相切等問題.典例感悟典例(1)已知三點(diǎn)A(1,0),B(0,),C(2,),則ABC外接圓的圓心到原點(diǎn)的距離為()A.B.C. D.(2)(2018廣州模擬)若一個(gè)圓的圓心是拋物線x24y的焦點(diǎn),且該圓與直線yx3相切,則該圓的標(biāo)準(zhǔn)方程是_解析(1)設(shè)ABC外接圓的一般方程為x2y2D

6、xEyF0,ABC外接圓的一般方程為x2y22xy10,圓心為,故ABC外接圓的圓心到原點(diǎn)的距離為 .(2)拋物線x24y的焦點(diǎn)為(0,1),即圓心為(0,1),設(shè)該圓的標(biāo)準(zhǔn)方程是x2(y1)2r2(r0),因?yàn)樵搱A與直線yx3,即xy30相切,所以r,故該圓的標(biāo)準(zhǔn)方程是x2(y1)22.答案(1)B(2)x2(y1)22方法技巧圓的方程的2種求法幾何法通過研究圓的性質(zhì)、直線和圓、圓與圓的位置關(guān)系,進(jìn)而求得圓的基本量和方程代數(shù)法用待定系數(shù)法先設(shè)出圓的方程,再由條件求得各系數(shù)演練沖關(guān)1圓(x2)2y24關(guān)于直線yx對(duì)稱的圓的方程是()A(x)2(y1)24B(x)2(y)24Cx2(y2)24D

7、(x1)2(y)24解析:選D圓與圓關(guān)于直線對(duì)稱,則圓的半徑相同,只需求圓心(2,0)關(guān)于直線yx對(duì)稱的點(diǎn)的坐標(biāo)即可設(shè)所求圓的圓心坐標(biāo)為(a,b),則解得所以圓(x2)2y24的圓心關(guān)于直線yx對(duì)稱的點(diǎn)的坐標(biāo)為(1,),從而所求圓的方程為(x1)2(y)24,故選D.2已知圓C的圓心是直線xy10與x軸的交點(diǎn),且圓C與直線xy30相切,則圓C的方程是()A(x1)2y22 B(x1)2y28C(x1)2y22 D(x1)2y28解析:選A根據(jù)題意,直線xy10與x軸的交點(diǎn)坐標(biāo)為(1,0),即圓心為(1,0)因?yàn)閳AC與直線xy30相切,所以半徑r,則圓C的方程為(x1)2y22,故選A.3圓心在

8、直線x2y0上的圓C與y軸的正半軸相切,圓C截x軸所得弦的長(zhǎng)為2,則圓C的標(biāo)準(zhǔn)方程為_解析:設(shè)圓心坐標(biāo)為(a,b),半徑為r.由已知又圓心(a,b)到y(tǒng)軸、x軸的距離分別為|a|,|b|,所以|a|r,|b|23r2.綜上,解得a2,b1,r2,所以圓心坐標(biāo)為(2,1),圓C的標(biāo)準(zhǔn)方程為(x2)2(y1)24.答案:(x2)2(y1)24考點(diǎn)(三)直線(圓)與圓的位置關(guān)系主要考查直線(圓)與圓位置關(guān)系的判斷、根據(jù)直線與圓的位置關(guān)系解決參數(shù)問題或與圓有關(guān)的軌跡問題.典例感悟典例(1)已知圓M:x2y22ay0(a0)截直線xy0所得線段的長(zhǎng)度是2,則圓M與圓N:(x1)2(y1)21的位置關(guān)系是

9、()A內(nèi)切B相交C外切 D相離(2)(2018麗水、衢州、湖州高三聯(lián)考)已知直線l1:2xy10,直線l2:4x2ya0,圓C:x2y22x0.若圓C上任意一點(diǎn)P到兩直線l1,l2的距離之和為定值2,則實(shí)數(shù)a_.解析(1)由題知圓M:x2(ya)2a2(a0),圓心(0,a)到直線xy0的距離d,所以22,解得a2,即圓M的圓心為(0,2),半徑為2.又圓N的圓心為(1,1),半徑為1,則圓M,圓N的圓心距|MN|,兩圓半徑之差為1,半徑之和為3,13,故兩圓相交(2)由題可知l1l2,若圓C上任意一點(diǎn)到兩直線的距離之和為定值2,則兩平行線之間的距離為2,且位于圓的兩側(cè)因?yàn)橹本€l1:2xy10

10、,直線l2:2xy0,所以l1與l2之間的距離d2,解得a18或a22,當(dāng)a22時(shí),兩條直線在圓的同側(cè),此時(shí)圓C上的點(diǎn)到兩直線的距離之和大于2,舍去,故a18.答案(1)B(2)18方法技巧1直線(圓)與圓位置關(guān)系問題的求解思路(1)研究直線與圓的位置關(guān)系主要通過將圓心到直線的距離同半徑做比較實(shí)現(xiàn),兩圓位置關(guān)系的判斷依據(jù)是兩圓心距離與兩半徑差與和的比較(2)直線與圓相切時(shí)利用“切線與過切點(diǎn)的半徑垂直,圓心到切線的距離等于半徑”建立關(guān)于切線斜率的等式,所以求切線方程時(shí)主要選擇點(diǎn)斜式過圓外一點(diǎn)求解切線段長(zhǎng)的問題,可先求出圓心到圓外點(diǎn)的距離,再結(jié)合半徑利用勾股定理計(jì)算2直線截圓所得弦長(zhǎng)的求解方法(1

11、)根據(jù)平面幾何知識(shí)構(gòu)建直角三角形,把弦長(zhǎng)用圓的半徑和圓心到直線的距離表示,即l2(其中l(wèi)為弦長(zhǎng),r為圓的半徑,d為圓心到直線的距離)(2)根據(jù)公式:l|x1x2|求解(其中l(wèi)為弦長(zhǎng),x1,x2為直線與圓相交所得交點(diǎn)的橫坐標(biāo),k為直線的斜率)(3)求出交點(diǎn)坐標(biāo),用兩點(diǎn)間的距離公式求解演練沖關(guān)1如圖,在平面直角坐標(biāo)系xOy中,直線y2x1與圓x2y24相交于A,B兩點(diǎn),則cosAOB()ABC D解析:選D因?yàn)閳Ax2y24的圓心為O(0,0),半徑為2,所以圓心O到直線y2x1的距離d,所以弦長(zhǎng)|AB|22.在AOB中,由余弦定理得cosAOB.2(2018浙江名師預(yù)測(cè)卷)已知圓C的方程為x2y2

12、1,直線l的方程為xy2,過圓C上任意一點(diǎn)P作與l夾角為45的直線,交l于點(diǎn)A,則|PA|的最小值為()A. B1C.1 D2解析:選D由題意可知,直線PA平行于坐標(biāo)軸,或與坐標(biāo)軸重合不妨設(shè)直線PAy軸,設(shè)P(cos ,sin ),則A(cos ,2cos ),|PA|2cos sin |2sin(45)|,|PA|的最小值為2.故選D.3已知?jiǎng)訄AC過A(4,0),B(0,2)兩點(diǎn),過點(diǎn)M(1,2)的直線交圓C于E,F(xiàn)兩點(diǎn),當(dāng)圓C的面積最小時(shí),|EF|的最小值為_解析:依題意得,動(dòng)圓C的半徑不小于|AB|,即當(dāng)圓C的面積最小時(shí),AB是圓C的一條直徑,此時(shí)圓心C是線段AB的中點(diǎn),即點(diǎn)C(2,1)

13、,又點(diǎn)M的坐標(biāo)為(1,2),且|CM|0)(3)圓的直徑式方程:(xx1)(xx2)(yy1)(yy2)0(圓的直徑的兩端點(diǎn)是A(x1,y1),B(x2,y2)4直線與圓位置關(guān)系的判定方法(1)代數(shù)方法(判斷直線與圓方程聯(lián)立所得方程組的解的情況):0相交,0相離,0相切(2)幾何方法(比較圓心到直線的距離與半徑的大小):設(shè)圓心到直線的距離為d,則dr相離,dr相切5圓與圓的位置關(guān)系已知兩圓的圓心分別為O1,O2,半徑分別為r1,r2,則(1)當(dāng)|O1O2|r1r2時(shí),兩圓外離;(2)當(dāng)|O1O2|r1r2時(shí),兩圓外切;(3)當(dāng)|r1r2|O1O2|r1r2時(shí),兩圓相交;(4)當(dāng)|O1O2|r1

14、r2|時(shí),兩圓內(nèi)切;(5)當(dāng)0|O1O2|r1r2|時(shí),兩圓內(nèi)含(二) 二級(jí)結(jié)論要用好1直線l1:A1xB1yC10與直線l2:A2xB2yC20的位置關(guān)系(1)平行A1B2A2B10且B1C2B2C10;(2)重合A1B2A2B10且B1C2B2C10;(3)相交A1B2A2B10;(4)垂直A1A2B1B20.針對(duì)練1若直線l1:mxy80與l2:4x(m5)y2m0垂直,則m_.解析:l1l2,4m(m5)0,m1.答案:12若點(diǎn)P(x0,y0)在圓x2y2r2上,則圓過該點(diǎn)的切線方程為:x0xy0yr2.針對(duì)練2過點(diǎn)(1,)且與圓x2y24相切的直線l的方程為_解析:點(diǎn)(1,)在圓x2

15、y24上,切線方程為xy4,即xy40.答案:xy40(三) 易錯(cuò)易混要明了1易忽視直線方程的幾種形式的限制條件,如根據(jù)直線在兩坐標(biāo)軸上的截距相等設(shè)方程時(shí),忽視截距為0的情況,直接設(shè)為1;再如,忽視斜率不存在的情況直接將過定點(diǎn)P(x0,y0)的直線設(shè)為yy0k(xx0)等針對(duì)練3已知直線過點(diǎn)P(1,5),且在兩坐標(biāo)軸上的截距相等,則此直線的方程為_解析:當(dāng)截距為0時(shí),直線方程為5xy0;當(dāng)截距不為0時(shí),設(shè)直線方程為1,代入P(1,5),得a6,直線方程為xy60.答案:5xy0或xy602討論兩條直線的位置關(guān)系時(shí),易忽視系數(shù)等于零時(shí)的討論導(dǎo)致漏解,如兩條直線垂直時(shí),一條直線的斜率不存在,另一條

16、直線斜率為0.如果利用直線l1:A1xB1yC10與l2:A2xB2yC20垂直的充要條件A1A2B1B20,就可以避免討論針對(duì)練4已知直線l1:(t2)x(1t)y1與l2:(t1)x(2t3)y20互相垂直,則t的值為_解析:l1l2,(t2)(t1)(1t)(2t3)0,解得t1或t1.答案:1或13求解兩條平行線之間的距離時(shí),易忽視兩直線系數(shù)不相等,而直接代入公式,導(dǎo)致錯(cuò)解針對(duì)練5兩平行直線3x2y50與6x4y50間的距離為_解析:把直線6x4y50化為3x2y0,故兩平行線間的距離d.答案:4易誤認(rèn)為兩圓相切即為兩圓外切,忽視兩圓內(nèi)切的情況導(dǎo)致漏解針對(duì)練6已知兩圓x2y22x6y1

17、0,x2y210x12ym0相切,則m_.解析:由x2y22x6y10,得(x1)2(y3)211,由x2y210x12ym0,得(x5)2(y6)261m.當(dāng)兩圓外切時(shí),有,解得m2510;當(dāng)兩圓內(nèi)切時(shí),有,解得m2510.答案:2510 A組107提速練一、選擇題1已知直線l:yk(x)和圓C:x2(y1)21,若直線l與圓C相切,則k()A0B.C.或0 D.或0解析:選D因?yàn)橹本€l與圓C相切,所以圓心C(0,1)到直線l的距離d1,解得k0或k,故選D.2(2018寧波十校高三5月適應(yīng)性考試)已知直線l過圓(x1)2(y2)21的圓心,當(dāng)原點(diǎn)到直線l距離最大時(shí),直線l的方程為()Ay2

18、 Bx2y50Cx2y30 Dx2y50解析:選D設(shè)圓心為M,則M(1,2)當(dāng)l與OM垂直時(shí),原點(diǎn)到l的距離最大作出示意圖如圖,kOM2,l的斜率為.直線l的方程為y2(x1),即x2y50.3直線l:ykx1與圓O:x2y21相交于A,B兩點(diǎn),則“k1”是“|AB|”的()A充分不必要條件 B必要不充分條件C充要條件 D既不充分也不必要條件解析:選A依題意,注意到|AB|等價(jià)于圓心O到直線l的距離等于,即有,k1.因此,“k1”是“|AB|”的充分不必要條件4若三條直線l1:4xy3,l2:mxy0,l3:xmy2不能圍成三角形,則實(shí)數(shù)m的取值最多有()A2個(gè) B3個(gè) C4個(gè) D6個(gè)解析:選

19、C三條直線不能圍成三角形,則至少有兩條直線平行或三條直線相交于同一點(diǎn)若l1l2,則m4;若l1l3,則m;若l2l3,則m的值不存在;若三條直線相交于同一點(diǎn),則m1或.故實(shí)數(shù)m的取值最多有4個(gè),故選C.5(2018溫州模擬)在直角坐標(biāo)系xOy中,已知點(diǎn)A(0,1),B(2,0),過A的直線交x軸于點(diǎn)C(a,0),若直線AC的傾斜角是直線AB傾斜角的2倍,則a()A. B.C1 D.解析:選B設(shè)直線AC的傾斜角為,直線AB的傾斜角為,即有tan tan 2.又tan ,tan ,所以,解得a.6與直線xy20和曲線x2y212x12y540都相切的半徑最小的圓的標(biāo)準(zhǔn)方程是()A(x2)2(y2)

20、22B(x2)2(y2)22C(x2)2(y2)22D(x2)2(y2)22解析:選D由題意知,曲線方程為(x6)2(y6)2(3)2,過圓心(6,6)作直線xy20的垂線,垂線方程為yx,則所求的最小圓的圓心必在直線yx上,又圓心(6,6)到直線xy20的距離d5,故最小圓的半徑為,圓心坐標(biāo)為(2,2),所以所求圓的標(biāo)準(zhǔn)方程為(x2)2(y2)22.7(2018長(zhǎng)沙模擬)若直線(21)x(2)y20(R)被圓C:(x1)2y24所截得的弦為MN,則|MN|的最小值是()A. B2C2 D4解析:選C直線方程(21)x(2)y20(R)可化為(2xy1)(x2y2)0(R),若則所以直線恒過圓

21、C:(x1)2y24內(nèi)的定點(diǎn)P(0,1),當(dāng)直線(21)x(2)y20(R)與直線CP垂直時(shí),|MN|最小,此時(shí)|MN|222.故選C.8(2018合肥質(zhì)檢)設(shè)圓x2y22x2y20的圓心為C,直線l過(0,3)且與圓C交于A,B兩點(diǎn),若|AB|2,則直線l的方程為()A3x4y120或4x3y90B3x4y120或x0C4x3y90或x0D3x4y120或4x3y90解析:選B由題可知,圓心C(1,1),半徑r2.當(dāng)直線l的斜率不存在時(shí),直線方程為x0,計(jì)算出弦長(zhǎng)為2,符合題意;當(dāng)直線l的斜率存在時(shí),可設(shè)直線l的方程為ykx3,由弦長(zhǎng)為2可知,圓心到該直線的距離為1,從而有1,解得k,所以直

22、線l的方程為yx3,即3x4y120.綜上,直線l的方程為x0或3x4y120,故選B.9兩個(gè)圓C1:x2y22axa240(aR)與C2:x2y22by1b20(bR)恰有三條公切線,則ab的最小值為()A3 B3C6 D6解析:選B兩個(gè)圓恰有三條公切線,則兩圓外切,兩圓的標(biāo)準(zhǔn)方程為圓C1:(xa)2y24,圓C2:x2(yb)21,所以C1(a,0),C2(0,b),213,即a2b29.由2,得(ab)218,所以3ab3,當(dāng)且僅當(dāng)“ab”時(shí)等號(hào)成立所以ab的最小值為3.10若圓(x3)2(y5)2r2上有且只有兩個(gè)點(diǎn)到直線4x3y20的距離等于1,則半徑r的取值范圍是()A(4,6)

23、B4,6C(4,5) D(4,5解析:選A設(shè)直線4x3ym0與直線4x3y20之間的距離為1,則有1,m3或m7.圓心(3,5)到直線4x3y30的距離等于6,圓心(3,5)到直線4x3y70的距離等于4,因此所求圓半徑的取值范圍是(4,6),故選A.二、填空題11直線l:xy230(R)恒過定點(diǎn)_,P(1,1)到直線l的距離的最大值為_解析:直線l:xy230(R),即(y3)x20,令解得直線l恒過定點(diǎn)(2,3)不妨記Q(2,3),則P(1,1)到直線l的距離的最大值為|PQ|.答案:(2,3)12若直線l1:yxa和直線l2:yxb將圓(x1)2(y2)28分成長(zhǎng)度相等的四段弧,則a2b

24、2_.解析:由題意得直線l1和l2截圓所得弦所對(duì)的圓心角相等,均為90,因此圓心到兩直線的距離均為r2,即2,得a2b2(21)2(12)218.答案:1813已知點(diǎn)M(2,1)及圓x2y24,則過M點(diǎn)的圓的切線方程為_,若直線axy40與該圓相交于A,B兩點(diǎn),且|AB|2,則a_.解析:若過點(diǎn)M的圓的切線斜率不存在,則切線方程為x2,經(jīng)驗(yàn)證滿足條件若切線斜率存在,可設(shè)切線方程為yk(x2)1,由圓心到直線的距離等于半徑得2,解得k,故切線方程為y(x2)1,即3x4y100.綜上,過M點(diǎn)的圓的切線方程為x2或3x4y100.由,得a.答案:x2或3x4y10014已知C的方程為x22xy20

25、,直線l:kxyx2k0與C交于A,B兩點(diǎn),當(dāng)|AB|取最大值時(shí),k_;當(dāng)ABC的面積最大時(shí),k_.解析:圓的方程可化為(x1)2y21,圓心C(1,0),半徑為1,當(dāng)直線過圓心時(shí),弦AB為直徑,|AB|最大,此時(shí)k1.設(shè)ACB,則SABC11sin sin ,當(dāng)90時(shí),ABC的面積最大,此時(shí)圓心到直線的距離為,由d,解得k0或k6.答案:10或615已知圓O:x2y2r2與圓C:(x2)2y2r2(r0)在第一象限的一個(gè)公共點(diǎn)為P,過點(diǎn)P作與x軸平行的直線分別交兩圓于不同兩點(diǎn)A,B(異于P點(diǎn)),且OAOB,則直線OP的斜率是_,r_.解析:兩圓的方程相減得,4x40,則點(diǎn)P的橫坐標(biāo)x1.易知

26、P為AB的中點(diǎn),因?yàn)镺AOB,所以|OP|AP|PB|,所以O(shè)AP為等邊三角形,所以APO60,因?yàn)锳Bx軸,所以POC60,所以直線OP的斜率為.設(shè)P(1,y1),則y1,所以P(1,),代入圓O,解得r2.答案:216(2018浦江模擬)設(shè)A是直線yx4上一點(diǎn),P,Q是圓C:x2(y2)217上不同的兩點(diǎn),若圓心C是APQ的重心則APQ面積的最大值為_解析:如圖,圓心C是APQ的重心,ACPQ,設(shè)C到PQ的距離為x,則PQ2,則A到PQ的距離為3x,SPAQ23x3x3.當(dāng)且僅當(dāng)x,即x時(shí)等號(hào)成立APQ面積的最大值為.答案:17定義:若平面點(diǎn)集A中的任一個(gè)點(diǎn)(x0,y0),總存在正實(shí)數(shù)r,

27、使得集合(x,y)|0;(x,y)|xy|6;(x,y)|0x2(y)21其中是開集的是_(請(qǐng)寫出所有符合條件的序號(hào))解析:集合(x,y)|0)與圓x2y24交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn),且有|,那么k的取值范圍是()A(,) B,)C,2) D,2)解析:選C當(dāng)|時(shí),O,A,B三點(diǎn)為等腰三角形AOB的三個(gè)頂點(diǎn),其中OAOB2,AOB120,從而圓心O到直線xyk0(k0)的距離為1,即1,解得k;當(dāng)k時(shí),|,又直線與圓x2y24有兩個(gè)不同的交點(diǎn),故2,即k0)設(shè)條件p:0r1,即0r1時(shí),直線在圓外,圓上沒有點(diǎn)到直線的距離為1;當(dāng)2r1,即r1時(shí),直線在圓外,圓上只有1個(gè)點(diǎn)到直線的距離

28、為1;當(dāng)02r1,即1r2時(shí),直線在圓外,此時(shí)圓上有2個(gè)點(diǎn)到直線的距離為1;當(dāng)2r0,即r2時(shí),直線與圓相切,此時(shí)圓上有2個(gè)點(diǎn)到直線的距離為1;當(dāng)0r21,即2r1,即r3時(shí),直線與圓相交,此時(shí)圓上有4個(gè)點(diǎn)到直線的距離為1.綜上,當(dāng)0r3時(shí),圓C上至多有2個(gè)點(diǎn)到直線xy30的距離為1;由圓C上至多有2個(gè)點(diǎn)到直線xy30的距離為1可得0rb0),而拋物線y24x的焦點(diǎn)為(1,0),所以c1,又離心率e,解得a2,b2a2c23,所以橢圓方程為1.故選A.答案(1)A(2)A方法技巧1圓錐曲線的定義(1)橢圓:|MF1|MF2|2a(2a|F1F2|);(2)雙曲線:|MF1|MF2|2a(2a|

29、F1F2|);(3)拋物線:|MF|d(d為M點(diǎn)到準(zhǔn)線的距離)注意應(yīng)用圓錐曲線定義解題時(shí),易忽視定義中隱含條件導(dǎo)致錯(cuò)誤2求解圓錐曲線標(biāo)準(zhǔn)方程的思路方法(1)定型,即指定類型,也就是確定圓錐曲線的類型、焦點(diǎn)位置,從而設(shè)出標(biāo)準(zhǔn)方程(2)計(jì)算,即利用待定系數(shù)法求出方程中的a2,b2或p.另外,當(dāng)焦點(diǎn)位置無(wú)法確定時(shí),拋物線常設(shè)為y22px或x22py(p0),橢圓常設(shè)為mx2ny21(m0,n0),雙曲線常設(shè)為mx2ny21(mn0)演練沖關(guān)1已知雙曲線1(a0,b0)的焦距為4,漸近線方程為2xy0,則雙曲線的方程為()A.1 B.1C.1 D.1解析:選A易知雙曲線1(a0,b0)的焦點(diǎn)在x軸上,

30、所以由漸近線方程為2xy0,得2,因?yàn)殡p曲線的焦距為4,所以c2.結(jié)合c2a2b2,可得a2,b4,所以雙曲線的方程為1.2(2018杭二中高三期中)過雙曲線C:1(a0,b0)的右焦點(diǎn)F的直線l:yx4與雙曲線C只有一個(gè)公共點(diǎn),則雙曲線C的焦距為_,C的離心率為_解析:雙曲線C:1(a0,b0)的漸近線方程為yx,因?yàn)檫^雙曲線C:1(a0,b0)的右焦點(diǎn)F的直線l:yx4與雙曲線C只有一個(gè)公共點(diǎn),所以又因?yàn)閍2b2c2,所以a2,b2,c4,所以2c8,e2.答案:823已知拋物線x24y的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),過P作PAl于點(diǎn)A,當(dāng)AFO30(O為坐標(biāo)原點(diǎn))時(shí),|PF|_.

31、解析:法一:令l與y軸的交點(diǎn)為B,在RtABF中,AFB30,|BF|2,所以|AB|.設(shè)P(x0,y0),則x0,代入x24y中,得y0,所以|PF|PA|y01.法二:如圖所示,AFO30,PAF30,又|PA|PF|,APF為頂角APF120的等腰三角形,而|AF|,|PF|.答案:考點(diǎn)(二)圓錐曲線的幾何性質(zhì)主要考查橢圓、雙曲線的離心率的計(jì)算、雙曲線漸近線的應(yīng)用以及拋物線的有關(guān)性質(zhì).典例感悟典例(1)(2018浙江名師預(yù)測(cè)卷)設(shè)拋物線C:y22px(p0)的焦點(diǎn)為F,點(diǎn)M在拋物線C上,|MF|5,若以MF為直徑的圓過點(diǎn)(0,2),則拋物線C的方程為()Ay24x或y28xBy22x或y

32、28xCy24x或y216x Dy22x或y216x(2)(2017全國(guó)卷)已知雙曲線C:1(a0,b0)的右頂點(diǎn)為A,以A為圓心,b為半徑作圓A,圓A與雙曲線C的一條漸近線交于M,N兩點(diǎn)若MAN60,則C的離心率為_解析(1)因?yàn)閽佄锞€C的方程為y22px(p0),所以焦點(diǎn)F.設(shè)M(x,y),由拋物線的性質(zhì)可得|MF|x5,所以x5.因?yàn)閳A心是MF的中點(diǎn),所以根據(jù)中點(diǎn)坐標(biāo)公式可得圓心橫坐標(biāo)為,又由已知可得圓的半徑也為,故可知該圓與y軸相切于點(diǎn)(0,2),故圓心縱坐標(biāo)為2,則點(diǎn)M的縱坐標(biāo)為4,所以M.將點(diǎn)M的坐標(biāo)代入拋物線方程,得p210p160,所以p2或p8,所以拋物線C的方程為y24x或

33、y216x,故選C.(2)雙曲線的右頂點(diǎn)為A(a,0),一條漸近線的方程為yx,即bxay0,則圓心A到此漸近線的距離d.又因?yàn)镸AN60,圓的半徑為b,所以bsin 60,即,所以e.答案(1)C(2)方法技巧1橢圓、雙曲線的離心率(離心率范圍)的求法求橢圓、雙曲線的離心率或離心率的范圍,關(guān)鍵是根據(jù)已知條件確定a,b,c的等量關(guān)系或不等關(guān)系,然后把b用a,c代換,求的值2雙曲線的漸近線的求法及用法(1)求法:把雙曲線標(biāo)準(zhǔn)方程等號(hào)右邊的1改為零,分解因式可得(2)用法:可得或的值;利用漸近線方程設(shè)所求雙曲線的方程演練沖關(guān)1已知雙曲線C:1(a0,b0)的兩條漸近線的夾角為60,則雙曲線C的離心

34、率為()A. B.C.或 D.或2解析:選D兩條漸近線的夾角為60,且兩條漸近線關(guān)于坐標(biāo)軸對(duì)稱,tan 30或tan 60.由,得e21,e(舍負(fù));由,得e213,e2(舍負(fù))故選D.2(2017全國(guó)卷)設(shè)A,B是橢圓C:1長(zhǎng)軸的兩個(gè)端點(diǎn)若C上存在點(diǎn)M滿足AMB120,則m的取值范圍是()A(0,19,) B(0, 9,)C(0,14,) D(0, 4,)解析:選A當(dāng)0m3時(shí),焦點(diǎn)在x軸上,要使C上存在點(diǎn)M滿足AMB120,則tan 60,即,解得0m1.當(dāng)m3時(shí),焦點(diǎn)在y軸上,要使C上存在點(diǎn)M滿足AMB120,則tan 60,即,解得m9.故m的取值范圍為(0,19,)3如圖,拋物線y24

35、x的一條弦AB經(jīng)過焦點(diǎn)F,取線段OB的中點(diǎn)D,延長(zhǎng)OA至點(diǎn)C,使|OA|AC|,過點(diǎn)C,D作y軸的垂線,垂足分別為點(diǎn)E,G,則|EG|的最小值為_解析:設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則y32y1,y4y2,|EG|y4y3y22y1.因?yàn)锳B為拋物線y24x的焦點(diǎn)弦,所以y1y24,所以|EG|y22y224,當(dāng)且僅當(dāng)y2,即y24時(shí)取等號(hào),所以|EG|的最小值為4.答案:4考點(diǎn)(三)圓錐曲線與圓、直線的綜合問題主要考查直線與圓錐曲線的位置關(guān)系以及圓錐曲線與圓相結(jié)合的問題.典例感悟典例(1)已知直線ykxt與圓x2(y1)21相切且與拋物線C:x24

36、y交于不同的兩點(diǎn)M,N,則實(shí)數(shù)t的取值范圍是()A(,3)(0,)B(,2)(0,)C(3,0) D(2,0)(2)已知雙曲線C:mx2ny21(mn0,解得t0或t3.故選A.(2)圓x2y26x2y90的標(biāo)準(zhǔn)方程為(x3)2(y1)21,則圓心為M(3,1),半徑r1.當(dāng)m0時(shí),由mx2ny21得1,則雙曲線的焦點(diǎn)在y軸上,不妨設(shè)雙曲線與圓相切的漸近線方程為yx,即axby0,則圓心到直線的距離d1,即|3ab|c,平方得9a26abb2c2a2b2,即8a26ab0,則ba,平方得b2a2c2a2,即c2a2,則ca,離心率e;當(dāng)m0,n0,b0)的左、右焦點(diǎn)分別為F1(c,0),F(xiàn)2(

37、c,0),P是雙曲線C右支上一點(diǎn),且|PF2|F1F2|,若直線PF1與圓x2y2a2相切,則雙曲線的離心率為()A.B.C2 D3解析:選B取線段PF1的中點(diǎn)為A,連接AF2,又|PF2|F1F2|,則AF2PF1,直線PF1與圓x2y2a2相切,|AF2|2a,|PF2|F1F2|2c,|PF1|2a2c,|PA|PF1|ac,則在RtAPF2中,4c2(ac)24a2,化簡(jiǎn)得(3c5a)(ac)0,則雙曲線的離心率為.2已知橢圓C:9x2y2m2(m0),直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M,則直線OM與直線l的斜率之積為()A9 BC D3解析:

38、選A設(shè)直線l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM)將ykxb代入9x2y2m2,得(k29)x22kbxb2m20,故xM,yMkxMb,故直線OM的斜率kOM,所以kOMk9,即直線OM與直線l的斜率之積為9. (一) 主干知識(shí)要記牢圓錐曲線的定義、標(biāo)準(zhǔn)方程和性質(zhì)名稱橢圓雙曲線拋物線定義|PF1|PF2|2a(2a|F1F2|)|PF1|PF2|2a(2ab0)1(a0,b0)y22px(p0)圖形幾何性質(zhì)軸長(zhǎng)軸長(zhǎng)2a,短軸長(zhǎng)2b實(shí)軸長(zhǎng)2a,虛軸長(zhǎng)2b離心率e (0e1)e1漸近線yx(二) 二級(jí)結(jié)論要用好1橢圓焦點(diǎn)三角形的3個(gè)規(guī)律設(shè)橢圓方程是1(ab

39、0),焦點(diǎn)F1(c,0),F(xiàn)2(c,0),點(diǎn)P的坐標(biāo)是(x0,y0)(1)三角形的三個(gè)邊長(zhǎng)是|PF1|aex0,|PF2|aex0,|F1F2|2c,e為橢圓的離心率(2)如果PF1F2中F1PF2,則這個(gè)三角形的面積SPF1F2c|y0|b2tan .(3)橢圓的離心率e.2雙曲線焦點(diǎn)三角形的2個(gè)結(jié)論P(yáng)(x0,y0)為雙曲線1(a0,b0)上的點(diǎn),PF1F2為焦點(diǎn)三角形(1)面積公式SPF1F2c|y0|r1r2sin (其中|PF1|r1,|PF2|r2,F(xiàn)1PF2)(2)焦半徑若P在右支上,|PF1|ex0a,|PF2|ex0a;若P在左支上,|PF1|ex0a,|PF2|ex0a.3拋

40、物線y22px(p0)焦點(diǎn)弦AB的4個(gè)結(jié)論(1)xAxB;(2)yAyBp2;(3)|AB|(是直線AB的傾斜角);(4)|AB|xAxBp.4圓錐曲線的通徑(1)橢圓通徑長(zhǎng)為;(2)雙曲線通徑長(zhǎng)為;(3)拋物線通徑長(zhǎng)為2p.5圓錐曲線中的最值(1)橢圓上兩點(diǎn)間的最大距離為2a(長(zhǎng)軸長(zhǎng))(2)雙曲線上兩點(diǎn)間的最小距離為2a(實(shí)軸長(zhǎng))(3)橢圓焦半徑的取值范圍為ac,ac,ac與ac分別表示橢圓焦點(diǎn)到橢圓上的點(diǎn)的最小距離與最大距離(4)拋物線上的點(diǎn)中頂點(diǎn)到拋物線準(zhǔn)線的距離最短(三) 易錯(cuò)易混要明了1利用橢圓、雙曲線的定義解題時(shí),要注意兩種曲線的定義形式及其限制條件如在雙曲線的定義中,有兩點(diǎn)是缺一

41、不可的:其一,絕對(duì)值;其二,2a|F1F2|.如果不滿足第一個(gè)條件,動(dòng)點(diǎn)到兩定點(diǎn)的距離之差為常數(shù),而不是差的絕對(duì)值為常數(shù),那么其軌跡只能是雙曲線的一支針對(duì)練1ABC的頂點(diǎn)A(5,0),B(5,0),ABC的內(nèi)切圓圓心在直線x3上,則頂點(diǎn)C的軌跡方程是_解析:如圖,設(shè)內(nèi)切圓的圓心為P,過點(diǎn)P作AC,BC的垂線PD,PF,垂足分別為D,F(xiàn),則|AD|AE|8,|BF|BE|2,|CD|CF|,|CA|CB|AD|BF|6.根據(jù)雙曲線定義,所求軌跡是以A,B為焦點(diǎn),實(shí)軸長(zhǎng)為6的雙曲線的右支,方程為1(x3)答案:1(x3)2解決橢圓、雙曲線、拋物線問題時(shí),要注意其焦點(diǎn)的位置針對(duì)練2若橢圓1的離心率為

42、,則k的值為_解析:當(dāng)焦點(diǎn)在x軸上時(shí),a28k,b29,e2,解得k4.當(dāng)焦點(diǎn)在y軸上時(shí),a29,b28k,e2,解得k.答案:4或3直線與圓錐曲線相交的必要條件是它們構(gòu)成的方程組有實(shí)數(shù)解,消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零,判別式0的限制尤其是在應(yīng)用根與系數(shù)的關(guān)系解決問題時(shí),必須先有“判別式0”;在解決交點(diǎn)、弦長(zhǎng)、中點(diǎn)、斜率、對(duì)稱或存在性問題時(shí)都應(yīng)在“0”下進(jìn)行 A組107提速練一、選擇題1(2018浙江高考)雙曲線y21的焦點(diǎn)坐標(biāo)是()A(,0),(,0)B(2,0),(2,0)C(0,),(0,) D(0,2),(0,2)解析:選B雙曲線方程為y21,a23,b21,且雙曲線

43、的焦點(diǎn)在x軸上,c2,即得該雙曲線的焦點(diǎn)坐標(biāo)為(2,0),(2,0)2雙曲線C:1(a0,b0)的離心率e,則它的漸近線方程為()Ayx ByxCyx Dyx解析:選A由雙曲線C:1(a0,b0)的離心率e,可得,1,可得,故雙曲線的漸近線方程為yx.3(2017全國(guó)卷)已知橢圓C:1(ab0)的左、右頂點(diǎn)分別為A1,A2,且以線段A1A2為直徑的圓與直線bxay2ab0相切,則C的離心率為()A. B.C. D.解析:選A以線段A1A2為直徑的圓的方程為x2y2a2,由圓心到直線bxay2ab0的距離da,得a23b2,所以C的離心率e .4(2018溫州適應(yīng)性測(cè)試)已知雙曲線1(a0,b0

44、)的離心率e(1,2,則其經(jīng)過第一、三象限的漸近線的傾斜角的取值范圍是()A. B.C. D.解析:選C因?yàn)殡p曲線1(a0,b0)的離心率e(1,2,所以12,所以14,又c2a2b2,所以00,b0)經(jīng)過第一、三象限的漸近線的方程為yx,設(shè)其傾斜角為,則tan ,又,所以,故選C.5(2017全國(guó)卷)過拋物線C:y24x的焦點(diǎn)F,且斜率為的直線交C于點(diǎn)M(M在x軸的上方),l為C的準(zhǔn)線,點(diǎn)N在l上且MNl,則M到直線NF的距離為()A. B2C2 D3解析:選C由題意,得F(1,0),則直線FM的方程是y(x1)由得x或x3.由M在x軸的上方,得M(3,2),由MNl,得|MN|MF|314.又NMF等于直線FM的傾斜角,即NMF60,因此MNF是邊長(zhǎng)為4的等邊三角形,所以點(diǎn)M到直線NF的距離為42.6已知F1,F(xiàn)2分別是橢圓

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!