2022高考數(shù)學一輪復習 坐標系與參數(shù)方程 第2課時 參數(shù)方程練習 理
《2022高考數(shù)學一輪復習 坐標系與參數(shù)方程 第2課時 參數(shù)方程練習 理》由會員分享,可在線閱讀,更多相關《2022高考數(shù)學一輪復習 坐標系與參數(shù)方程 第2課時 參數(shù)方程練習 理(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022高考數(shù)學一輪復習 坐標系與參數(shù)方程 第2課時 參數(shù)方程練習 理 1.直線(t為參數(shù))的傾斜角為( ) A.70° B.20° C.160° D.110° 答案 B 解析 方法一:將直線參數(shù)方程化為標準形式: (t為參數(shù)),則傾斜角為20°,故選B. 方法二:tanα===tan20°,∴α=20°. 另外,本題中直線方程若改為,則傾斜角為160°. 2.若直線的參數(shù)方程為(t為參數(shù)),則直線的斜率為( ) A. B.- C. D.- 答案 D 3.參數(shù)方程(θ為參數(shù))表示的曲線上的點到坐標軸的最近距離為( ) A.1 B
2、.2 C.3 D.4 答案 A 解析 參數(shù)方程(θ為參數(shù))表示的曲線的普通方程為(x+3)2+(y-4)2=4,這是圓心為(-3,4),半徑為2的圓,故圓上的點到坐標軸的最近距離為1. 4.(2018·皖南八校聯(lián)考)若直線l:(t為參數(shù))與曲線C:(θ為參數(shù))相切,則實數(shù)m為( ) A.-4或6 B.-6或4 C.-1或9 D.-9或1 答案 A 解析 由(t為參數(shù)),得直線l:2x+y-1=0,由(θ為參數(shù)),得曲線C:x2+(y-m)2=5,因為直線與曲線相切,所以圓心到直線的距離等于半徑,即=,解得m=-4或m=6. 5.(2014·安徽,理)以平面直角坐
3、標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程是(t為參數(shù)),圓C的極坐標方程是ρ=4cosθ,則直線l被圓C截得的弦長為( ) A. B.2 C. D.2 答案 D 解析 由題意得直線l的方程為x-y-4=0,圓C的方程為(x-2)2+y2=4.則圓心到直線的距離d=,故弦長=2=2. 6.(2017·北京朝陽二模)在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以原點O為極點,以x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=4·sin(θ+),則直線l和曲線C的公共點有( ) A.0個 B.
4、1個 C.2個 D.無數(shù)個 答案 B 解析 直線l:(t為參數(shù))化為普通方程得x-y+4=0; 曲線C:ρ=4sin(θ+)化成普通方程得(x-2)2+(y-2)2=8, ∴圓心C(2,2)到直線l的距離為d==2=r. ∴直線l與圓C只有一個公共點,故選B. 7.在直角坐標系中,已知直線l:(s為參數(shù))與曲線C:(t為參數(shù))相交于A,B兩點,則|AB|=________. 答案 解析 曲線C可化為y=(x-3)2,將代入y=(x-3)2,化簡解得s1=1,s2=2,所以|AB|=|s1-s2|=. 8.(2017·人大附中模擬)已知直線l的參數(shù)方程為(t為參數(shù)),圓
5、C的極坐標方程為ρ+2sinθ=0,若在圓C上存在一點P,使得點P到直線l的距離最小,則點P的直角坐標為________. 答案 (,-) 解析 由已知得,直線l的普通方程為y=-x+1+2,圓C的直角坐標方程為x2+(y+1)2=1,在圓C上任取一點P(cosα,-1+sinα)(α∈[0,2π)),則點P到直線l的距離為d===.∴當α=時,dmin=,此時P(,-). 9.(2018·衡水中學調(diào)研)已知直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2sinθ-2cosθ. (1)求曲線C的參數(shù)方程; (2)當α=時,求
6、直線l與曲線C交點的極坐標. 答案 (1)(φ為參數(shù)) (2)(2,),(2,π) 解析 (1)由ρ=2sinθ-2cosθ, 可得ρ2=2ρsinθ-2ρcosθ. 所以曲線C的直角坐標方程為x2+y2=2y-2x, 化為標準方程為(x+1)2+(y-1)2=2. 曲線C的參數(shù)方程為(φ為參數(shù)). (2)當α=時,直線l的方程為化為普通方程為y=x+2. 由解得或 所以直線l與曲線C交點的極坐標分別為(2,),(2,π). 10.(2016·課標全國Ⅱ)在直角坐標系xOy中,圓C的方程為(x+6)2+y2=25. (1)以坐標原點為極點,x軸正半軸為極軸建立極坐標系
7、,求C的極坐標方程; (2)直線l的參數(shù)方程是(t為參數(shù)),l與C交于A,B兩點,|AB|=,求l的斜率. 答案 (1)ρ2+12ρcosθ+11=0 (2)或- 解析 (1)由x=ρcosθ,y=ρsinθ可得圓C的極坐標方程為ρ2+12ρcosθ+11=0. (2)在(1)中建立的極坐標系中,直線l的極坐標方程為θ=α(ρ∈R). 設A,B所對應的極徑分別為ρ1,ρ2,將l的極坐標方程代入C的極坐標方程得ρ2+12ρcosα+11=0. 于是ρ1+ρ2=-12cosα,ρ1ρ2=11. |AB|=|ρ1-ρ2|= =. 由|AB|=得cos2α=,tanα=±.
8、所以l的斜率為或-. 11.(2017·江蘇,理)在平面直角坐標系xOy中,已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù)).設P為曲線C上的動點,求點P到直線l的距離的最小值. 答案 解析 直線l的普通方程為x-2y+8=0. 因為點P在曲線C上,設P(2s2,2s), 從而點P到直線l的距離d==. 當s=時,smin=. 因此當點P的坐標為(4,4)時,曲線C上點P到直線l的距離取到最小值為. 12.(2018·湖南省五市十校高三聯(lián)考)在直角坐標系xOy中,設傾斜角為α的直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線C:(θ為參數(shù))相交于不同的兩點A,B
9、. (1)若α=,求線段AB的中點的直角坐標; (2)若直線l的斜率為2,且過已知點P(3,0),求 |PA|·|PB|的值. 答案 (1)(,) (2) 解析 (1)由曲線C:(θ為參數(shù)),可得曲線C的普通方程是x2-y2=1. 當α=時,直線l的參數(shù)方程為(t為參數(shù)), 代入曲線C的普通方程,得t2-6t-16=0,設A,B兩點對應的參數(shù)分別為t1,t2,則t1+t2=6, 所以線段AB的中點對應的t==3, 故線段AB的中點的直角坐標為(,). (2)將直線l的參數(shù)方程代入曲線C的普通方程,化簡得(cos2α-sin2α)t2+6tcosα+8=0, 則|PA|·|
10、PB|=|t1t2|=|| =||, 由已知得tanα=2,故|PA|·|PB|=. 13.(2018·東北三省四市二模)已知在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系.曲線C1的極坐標方程為ρ=4cosθ,直線l的參數(shù)方程是(t為參數(shù)). (1)求曲線C1的直角坐標方程及直線l的普通方程; (2)若曲線C2的參數(shù)方程為(α為參數(shù)),曲線C1上的點P的極角為,Q為曲線C2上的動點,求PQ的中點M到直線l的距離的最大值. 答案 (1)x2+y2-4x=0,x+2y-3=0 (2) 解析 (1)由ρ=4cosθ得ρ2=4ρcosθ, 又x2+y2=ρ2,
11、x=ρcosθ,y=ρsinθ,所以曲線C1的直角坐標方程為x2+y2-4x=0, 由直線l的參數(shù)方程消去參數(shù)t得直線l的普通方程為x+2y-3=0. (2)因為點P的極坐標為(2,),直角坐標為(2,2), 點Q的直角坐標為(2cosα,sinα), 所以M(1+cosα,1+sinα), 點M到直線l的距離d==|sin(α+)|, 當α+=+kπ(k∈Z),即α=+kπ(k∈Z)時,點M到直線l的距離d的最大值為. 14.(2018·天星大聯(lián)考)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2co
12、s(θ+),若直線l與曲線C交于A,B兩點. (1)若P(0,-1),求|PA|+|PB|; (2)若點M是曲線C上不同于A,B的動點,求△MAB的面積的最大值. 答案 (1) (2) 解析 (1)ρ=2cos(θ+)可化為ρ=2cosθ-2sinθ,將代入,得曲線C的直角坐標方程為(x-1)2+(y+1)2=2.將直線l的參數(shù)方程化為(t為參數(shù)),代入(x-1)2+(y+1)2=2,得t2-t-1=0,設方程的解為t1,t2,則t1+t2=,t1t2=-1, 因而|PA|+|PB|=|t1|+|t2|=|t1-t2| ==. (2)將直線l的參數(shù)方程化為普通方程為2x-y-1=
13、0,設M(1+cosθ,-1+sinθ), 由點到直線的距離公式,得M到直線AB的距離為 d==, 最大值為,由(1)知|AB|=|PA|+|PB|=,因而△MAB面積的最大值為××=. 1.(2018·山西5月聯(lián)考改編)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù),φ∈[0,]),直線l與⊙C:x2+y2-2x-2y=0交于M,N兩點,當φ變化時,求弦長|MN|的取值范圍. 答案 [,4] 解析 將直線的參數(shù)方程代入圓的直角坐標方程中得, (2+tcosφ)2+(+tsinφ)2-2(2+tcosφ)-2(+tsinφ)=0, 整理得,t2+2tcosφ-3=0
14、, 設M,N兩點對應的參數(shù)分別為t1,t2,則t1+t2=-2cosφ,t1·t2=-3, ∴|MN|=|t1-t2|==, ∵φ∈[0,],∴cosφ∈[,1],∴|MN|∈[,4]. 2.(2018·陜西省西安地區(qū)高三八校聯(lián)考)在平面直角坐標系xOy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2sinθ,θ∈[0,2π). (1)求曲線C的直角坐標方程; (2)在曲線C上求一點D,使它到直線l:(t為參數(shù),t∈R)的距離最短,并求出點D的直角坐標. 答案 (1)x2+y2-2y=0(或x2+(y-1)2=1) (2)(,) 解析 (1)由ρ
15、=2sinθ,θ∈[0,2π),可得ρ2=2ρsinθ. 因為ρ2=x2+y2,ρsinθ=y(tǒng), 所以曲線C的直角坐標方程為x2+y2-2y=0(或x2+(y-1)2=1). (2)因為直線l的參數(shù)方程為(t為參數(shù),t∈R),消去t得直線l的普通方程為y=-x+5. 因為曲線C:x2+(y-1)2=1是以(0,1)為圓心,1為半徑的圓,設點D(x0,y0),且點D到直線l:y=-x+5的距離最短,所以曲線C在點D處的切線與直線l:y=-x+5平行, 即直線CD與l的斜率的乘積等于-1,即×(-)=-1.① 因為x02+(y0-1)2=1,② 由①②解得x0=-或x0=, 所以點
16、D的直角坐標為(-,)或(,). 由于點D到直線y=-x+5的距離最短,所以點D的直角坐標為(,). 3.(2014·課標全國Ⅰ)已知曲線C:+=1,直線l:(t為參數(shù)). (1)寫出曲線C的參數(shù)方程,直線l的普通方程; (2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值. 思路 (1)利用橢圓+=1(a>0,b>0)的參數(shù)方程為(θ為參數(shù)),寫出曲線C的參數(shù)方程.消去直線l的參數(shù)方程中的參數(shù)t可得直線l的普通方程. (2)設出點P的坐標的參數(shù)形式.求出點P到直線l的距離d,則|PA|=.轉化為求關于θ的三角函數(shù)的最值問題,利用輔助角公式as
17、inθ+bcosθ=sin(θ+φ)求解. 答案 (1)C:(θ為參數(shù)),l:2x+y-6=0 (2)|PA|max=,|PA|min= 解析 (1)曲線C的參數(shù)方程為(θ為參數(shù)). 直線l的普通方程為2x+y-6=0. (2)曲線C上任意一點P(2cosθ,3sinθ)到l的距離為d=|4cosθ+3sinθ-6|, 則|PA|==|5sin(θ+α)-6|,其中α為銳角,且tanα=. 當sin(θ+α)=-1時,|PA|取得最大值,最大值為. 當sin(θ+α)=1時,|PA|取得最小值,最小值為. 4.(2015·福建)在平面直角坐標系xOy中,圓C的參數(shù)方程為(t為
18、參數(shù)).在極坐標系(與平面直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,直線l的方程為ρsin(θ-)=m(m∈R). (1)求圓C的普通方程及直線l的直角坐標方程; (2)設圓心C到直線l的距離等于2,求m的值. 答案 (1)(x-1)2+(y+2)2=9,x-y+m=0 (2)m=-3±2 解析 (1)消去參數(shù)t,得到圓C的普通方程為(x-1)2+(y+2)2=9. 由ρsin(θ-)=m,得 ρsinθ-ρcosθ-m=0. 所以直線l的直角坐標方程為x-y+m=0. (2)依題意,圓心C到直線l的距離等于2, 即=2,解得m=-3±2
19、. 5.已知曲線C1:(α為參數(shù)),C2:(θ為參數(shù)). (1)分別求出曲線C1,C2的普通方程; (2)若C1上的點P對應的參數(shù)為α=,Q為C2上的動點,求PQ中點M到直線C3:(t為參數(shù))距離的最小值及此時Q點坐標. 答案 (1)C1:(x+4)2+(y-3)2=1 C2:+=1 (2),(,-) 解析 (1)由曲線C1:(α為參數(shù)),得(x+4)2+(y-3)2=1, 它表示一個以(-4,3)為圓心,以1為半徑的圓; 由C2:(θ為參數(shù)),得+=1, 它表示一個中心為坐標原點,焦點在x軸上,長半軸長為8,短半軸長為3的橢圓. (2)當α=時,P點的坐標為(-4,4)
20、,設Q點坐標為(8cosθ,3sinθ),PQ的中點M(-2+4cosθ,2+sinθ). ∵C3:∴C3的普通方程為x-2y-7=0, ∴d= ==, ∴當sinθ=-,cosθ=時,d的最小值為, ∴Q點坐標為(,-). 第二次作業(yè) 1.(2018·衡水中學調(diào)研卷)在平面直角坐標系xOy中,曲線C1:(φ為參數(shù)),曲線C2:x2+y2-2y=0,以原點O為極點,x軸的正半軸為極軸建立極坐標系,射線l:θ=α(ρ≥0)與曲線C1,C2分別交于點A,B(均異于原點O). (1)求曲線C1,C2的極坐標方程; (2)當0<α<時,求|OA|2+|OB|2的取值范圍. 答案 (
21、1)ρ2=,ρ=2sinθ (2)(2,5) 解析 (1)∵(φ為參數(shù)),∴曲線C1的普通方程為+y2=1, 由得曲線C1的極坐標方程為ρ2=. ∵x2+y2-2y=0,∴曲線C2的極坐標方程為ρ=2sinθ. (2)由(1)得|OA|2=ρ2=,|OB|2=ρ2=4sin2α, ∴|OA|2+|OB|2=+4sin2α=+4(1+sin2α)-4, ∵0<α<,∴1<1+sin2α<2,∴6<+4(1+sin2α)<9, ∴|OA|2+|OB|2的取值范圍為(2,5). 2.(2018·皖南八校聯(lián)考)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(a>0,β為參數(shù)).以O為極點
22、,x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程為ρcos(θ-)=. (1)若曲線C與l只有一個公共點,求a的值; (2)A,B為曲線C上的兩點,且∠AOB=,求△OAB面積的最大值. 答案 (1)a=1 (2) 解析 (1)由題意知,曲線C是以(a,0)為圓心,以a為半徑的圓, 直線l的直角坐標方程為x+y-3=0. 由直線l與圓C只有一個公共點,可得=a, 解得a=1,a=-3(舍).所以a=1. (2)曲線C是以(a,0)為圓心,以a為半徑的圓,且∠AOB=,由正弦定理得=2a,所以|AB|=a. 又|AB|2=3a2=|OA|2+|OB|2-2|OA|·|OB
23、|·cos≥|OA|·|OB|, 所以S△OAB=|OA|·|OB|sin≤×3a2×=, 所以△OAB面積的最大值為. 3.(2018·福建質(zhì)檢)在直角坐標系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)).在以坐標原點O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sinθ,曲線C3:θ=(ρ>0),A(2,0). (1)把C1的參數(shù)方程化為極坐標方程; (2)設C3分別交C1,C2于點P,Q,求△APQ的面積. 答案 (1)ρ=4cosθ (2)- 解析 (1)曲線C1的普通方程為(x-2)2+y2=4,即x2+y2-4x=0, 所以C1的極坐標方程為ρ2-4ρcosθ
24、=0,即ρ=4cosθ. (2)方法一:依題意,設點P,Q的極坐標分別為(ρ1,),(ρ2,). 將θ=代入ρ=4cosθ,得ρ1=2, 將θ=代入ρ=2sinθ,得ρ2=1, 所以|PQ|=|ρ1-ρ2|=2-1, 點A(2,0)到曲線θ=(ρ>0)的距離d=|OA|sin=1. 所以S△APQ=|PQ|·d=×(2-1)×1=. 方法二:依題意,設點P,Q的極坐標分別為(ρ1,),(ρ2,). 將θ=代入ρ=4cosθ,得ρ1=2,得|OP|=2, 將θ=代入ρ=2sinθ,得ρ2=1,即|OQ|=1. 因為A(2,0),所以∠POA=, 所以S△APQ=S△OPA-
25、S△OQA =|OA|·|OP|·sin-|OA|·|OQ|·sin =×2×2×-×2×1× =-. 4.(2018·河北保定模擬)在平面直角坐標系中,將曲線C1上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線C2.以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系,已知曲線C1的極坐標方程為ρ=2. (1)求曲線C2的參數(shù)方程; (2)過坐標原點O且關于y軸對稱的兩條直線l1與l2分別交曲線C2于A,C和B,D,且點A在第一象限,當四邊形ABCD的周長最大時,求直線l1的普通方程. 答案 (1)(θ為參數(shù)) (2)y=x 解析 (1)由ρ=2,得ρ2=4,因為ρ
26、2=x2+y2,x=ρcosθ,y=ρsinθ,所以曲線C1的直角坐標方程為x2+y2=4. 由題可得曲線C2的方程為+y2=1. 所以曲線C2的參數(shù)方程為(θ為參數(shù)). (2)設四邊形ABCD的周長為l,點A(2cosθ,sinθ), 則l=8cosθ+4sinθ=4(cosθ+sinθ)=4sin(θ+φ), 其中cosφ=,sinφ=. 所以當θ+φ=2kπ+(k∈Z)時,l取得最大值,最大值為4. 此時θ=2kπ+-φ(k∈Z), 所以2cosθ=2sinφ=,sinθ=cosφ=, 此時A(,). 所以直線l1的普通方程為y=x. 5.(2018·湖北鄂南高中模
27、擬)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)).在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的極坐標方程為ρ=2sinθ. (1)求直線l的普通方程和圓C的直角坐標方程; (2)設圓C與直線l交于A,B兩點,若點P的坐標為(3,),求|PA|+|PB|. 答案 (1)y=-x+3+,x2+(y-)2=5 (2)3 解析 (1)由直線l的參數(shù)方程(t為參數(shù))得直線l的普通方程為y=-x+3+. 由ρ=2sinθ,得x2+y2-2y=0, 即圓C的直角坐標方程為x2+(y-)2=5. (2)通解:由得x2-3x+2=0,
28、 解得或 不妨設A(1,2+),B(2,1+),又點P的坐標為(3,). 故|PA|+|PB|=+=3. 優(yōu)解:將直線l的參數(shù)方程代入圓C的直角坐標方程,得(3-t)2+(t)2=5,即t2-3t+4=0. 由于Δ=(3)2-4×4=2>0,故可設t1,t2是上述方程的兩個實根,所以 又直線l過點P(3,), 故|PA|+|PB|=|t1|+|t2|=t1+t2=3. 6.(2017·江西南昌一模)在平面直角坐標系xOy中,曲線C1過點P(a,1),其參數(shù)方程為(t為參數(shù),a∈R).以O為極點,x軸非負半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρcos2θ+4cosθ-ρ
29、=0. (1)求曲線C1的普通方程和曲線C2的直角坐標方程; (2)已知曲線C1與曲線C2交于A,B兩點,且|PA|=2|PB|,求實數(shù)a的值. 答案 (1)x-y-a+1=0,y2=4x (2)或 解析 (1)∵曲線C1的參數(shù)方程為 ∴其普通方程為x-y-a+1=0. ∵曲線C2的極坐標方程為ρcos2θ+4cosθ-ρ=0, ∴ρ2cos2θ+4ρcosθ-ρ2=0, ∴x2+4x-x2-y2=0,即曲線C2的直角坐標方程為y2=4x. (2)設A,B兩點所對應的參數(shù)分別為t1,t2,由得2t2-2t+1-4a=0. Δ=(2)2-4×2(1-4a)>0,即a>0,由根與系數(shù)的關系得 根據(jù)參數(shù)方程的幾何意義可知|PA|=2|t1|,|PB|=2|t2|, 又|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=-2t2. ∴當t1=2t2時,有,解得a=>0,符合題意. 當t1=-2t2時,有,解得a=>0,符合題意. 綜上所述,實數(shù)a的值為或.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當頭廉字入心爭當公安隊伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅守廉潔底線
- 2025做擔當時代大任的中國青年PPT青年思想教育微黨課
- 2025新年工作部署會圍繞六個干字提要求
- XX地區(qū)中小學期末考試經(jīng)驗總結(認真復習輕松應考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展營造風清氣正的環(huán)境
- 冬季消防安全知識培訓冬季用電防火安全
- 2025加強政治引領(政治引領是現(xiàn)代政黨的重要功能)
- 主播直播培訓直播技巧與方法
- 2025六廉六進持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領鄉(xiāng)村振興工作總結
- XX中小學期末考試經(jīng)驗總結(認真復習輕松應考)
- 幼兒園期末家長會長長的路慢慢地走