《【備戰(zhàn)2013】高考數(shù)學(xué) 6年高考母題精解精析 專題03 導(dǎo)數(shù)與函數(shù)06 文》由會員分享,可在線閱讀,更多相關(guān)《【備戰(zhàn)2013】高考數(shù)學(xué) 6年高考母題精解精析 專題03 導(dǎo)數(shù)與函數(shù)06 文(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
備戰(zhàn)2013高考數(shù)學(xué)(文)6年高考母題精解精析專題03 導(dǎo)數(shù)與函數(shù)06
31.(2010安徽文數(shù))20.(本小題滿分12分)
設(shè)函數(shù),,求函數(shù)的單調(diào)區(qū)間與極值。
【命題意圖】本題考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值的方法,考查綜合應(yīng)用數(shù)學(xué)知識解決問題的能力.
【解題指導(dǎo)】(1)對函數(shù)求導(dǎo),對導(dǎo)函數(shù)用輔助角公式變形,利用導(dǎo)數(shù)等于0得極值點,通過列表的方法考查極值點的兩側(cè)導(dǎo)數(shù)的正負(fù),判斷區(qū)間的單調(diào)性,求極值.
32.(2010重慶文數(shù))(19) (本小題滿分12分), (Ⅰ)小問5分,(Ⅱ)小問7分.)
已知函數(shù)(其中常數(shù)a,b∈R),是奇函數(shù).
(Ⅰ)求的
2、表達式;
(Ⅱ)討論的單調(diào)性,并求在區(qū)間[1,2]上的最大值和最小值.
33.(2010浙江文數(shù))(21)(本題滿分15分)已知函數(shù)(a-b)
3、的距離為
(Ⅰ)當(dāng)n=5時,設(shè),求,;
(Ⅱ)證明:,且;
(Ⅲ) 證明:三個數(shù)中至少有一個是偶數(shù)
即三個數(shù)中至少有一個是偶數(shù)。
36.(2010天津文數(shù))(20)(本小題滿分12分)
已知函數(shù)f(x)=,其中a>0.
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.
37.(2010福建文數(shù))22.(本小題滿分14分)
已知函數(shù)f(x)=的圖像在點P(0,f(0))處的切線方程為y=3x-2
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)設(shè)g(x)=f(x)+是[]上的增函數(shù)。K^S*5U
4、.C#O
(i)求實數(shù)m的最大值;
(ii)當(dāng)m取最大值時,是否存在點Q,使得過點Q的直線若能與曲線y=g(x)圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等?若存在,求出點Q的坐標(biāo);若不存在,說明理由。K^S*5U.C#O
38.(2010福建文數(shù))21.(本小題滿分12分)
某港口要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口北偏西30°且與該港口相距20海里的處,并正以30海里/小時的航行速度沿正東方向勻速行駛。假設(shè)該小艇沿直線方向以海里/小時的航行速度勻速行駛,經(jīng)過小時與輪船相遇。K^S*5U.C#O
(Ⅰ)若希望相遇時小艇的航行距離
5、最小,則小艇航行速度的大小應(yīng)為多少?
(Ⅱ)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;
(Ⅲ)是否存在,使得小艇以海里/小時的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定的取值范圍;若不存在,請說明理由。
39.(2010四川文數(shù))(22)(本小題滿分14分)
設(shè)(且),g(x)是f(x)的反函數(shù).
(Ⅰ)求;
(Ⅱ)當(dāng)時,恒有成立,求t的取值范圍;
(Ⅲ)當(dāng)0<a≤時,試比較f(1)+f(2)+…+f(n)與的大小,并說明理由.
40.(2010湖北文數(shù))21.(本小題滿分14分)
設(shè)函數(shù),其中a>
6、0,曲線在點P(0,)處的切線方程為y=1
(Ⅰ)確定b、c的值
(Ⅱ)設(shè)曲線在點()及()處的切線都過點(0,2)證明:當(dāng)時,
(Ⅲ)若過點(0,2)可作曲線的三條不同切線,求a的取值范圍。
41.(2010湖北文數(shù))19.(本小題滿分12分)
已知某地今年年初擁有居民住房的總面積為a(單位:m2),其中有部分舊住房需要拆除。當(dāng)?shù)赜嘘P(guān)部門決定每年以當(dāng)年年初住房面積的10%建設(shè)新住房,同事也拆除面積為b(單位:m2)的舊住房。
(Ⅰ)分別寫出第一年末和第二年末的實際住房面積的表達式:
(Ⅱ)如果第五年末該地的住房面積正好比今年年初的住房面積增加了30%,則每年拆除的舊住房面積b是多少?(計算時取1.15=1.6)
42.(2010山東理數(shù))(22)(本小題滿分14分)
已知函數(shù).
(Ⅰ)當(dāng)時,討論的單調(diào)性;
(Ⅱ)設(shè)當(dāng)時,若對任意,存在,使
,求實數(shù)取值范圍.
(Ⅱ)當(dāng)時,在(0,1)上是減函數(shù),在(1,2)上是增函數(shù),所以對任意,
有,又已知存在,使,所以,,
即存在,使,即,即,
所以,解得,即實數(shù)取值范圍是。
- 14 -