牛頓-萊布尼茨公式.ppt

上傳人:xt****7 文檔編號:20299176 上傳時間:2021-03-05 格式:PPT 頁數(shù):12 大?。?88KB
收藏 版權申訴 舉報 下載
牛頓-萊布尼茨公式.ppt_第1頁
第1頁 / 共12頁
牛頓-萊布尼茨公式.ppt_第2頁
第2頁 / 共12頁
牛頓-萊布尼茨公式.ppt_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《牛頓-萊布尼茨公式.ppt》由會員分享,可在線閱讀,更多相關《牛頓-萊布尼茨公式.ppt(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、1 根據(jù)定積分定義計算定積分即按分割 -求近似值 - 累加 -取極限的方法計算定積分不是一件容易的事 。事實上,除了一些特殊情形外,這種方法往往無 法計算。為此必須尋求簡單的計算方法。從不定積 分和定積分的定義發(fā)現(xiàn),不定積分是作為微分的逆 運算定義的,定積分是作為積分和定義的,從表面 上看,它們是毫不相干的,那么它們實質上之間是 否就沒有聯(lián)系?人們在經(jīng)過長期探索,最終了揭示 他們之間的內在聯(lián)系,即積分計算的有力工具即著 名的微分基本定理 牛頓萊布尼茨公式。 5.2 微積分的基本公式 2 設函數(shù) )( xf 在區(qū)間 , ba 上連續(xù),并且設 x 為 , ba 上的一點, xa dxxf )( 考

2、察定積分 xa dttf )( 記 .)()( xa dttfx 積分上限函數(shù) 如果上限 x 在區(qū)間 , ba 上任意變動,則對于 每一個取定的 x 值,定積分有一個對應值,所以 它在 , ba 上定義了一個函數(shù), 1. 積分上限函數(shù)的概念 5.2.1 積分上限函數(shù) 3 定理 如果 )( xf 在 , ba 上連續(xù),則積分上限的函 數(shù) dttfx x a )()( 在 , ba 上具有導數(shù),且它的導 數(shù)是 )()()( xfdttf dx d x x a )( bxa 2.積分上限函數(shù)的性質 定理 2(原函數(shù)存在定理) 如果 )( xf 在 , ba 上連續(xù),則積分上限的函 數(shù) dttfx x

3、 a )()( 就是 )( xf 在 , ba 上的一個 原函數(shù) . 4 定理的重要意義: ( 1)肯定了連續(xù)函數(shù)的原函數(shù)是存在的 . ( 2)初步揭示了積分學中的定積分與原函數(shù)之 間的聯(lián)系 . 例 1 )(,)( 0 2 xdttex x t 求設 解 利用定理 1得 )(x 2xxe 5 定理 3(微積分基本公式) 如果 )( xF 是連續(xù)函數(shù) )( xf 在區(qū)間 , ba 上 的一個原函數(shù),則 )()()( aFbFdxxf b a . 牛頓 萊布尼茨公式: 5.2.2 牛頓 萊布尼茨公式 )()()( aFbFdxxfba baxF )( 6 微積分基本公式表明: 一個連續(xù)函數(shù)在區(qū)間

4、, ba 上的定積分等于 它的任意一個原函數(shù)在區(qū)間 , ba 上的增量 . 因 此 注意 當 ba 時, )()()( aFbFdxxfba 仍成立 . 求定積分問題轉化為求原函數(shù)的問題 . 7 例 2 求 10 2dxx 原式 1 0 3 3 1 x 3 1解 解 例 3 求 11 21 1 dxx 原式 1 1 a r c t a n x )1a r c t a n (1a r c t a n 2 8 例 4 求 解 .112 dxx 當 0 x 時, x1 的一個原函數(shù)是 |ln x , dxx 12 1 1 2|ln x .2ln2ln1ln 解 原式 = 例 5 求 31 2 dxx

5、 21 2 dxx 32 2 dxx 322 1 )2()2( dxxdxx 3 2 22 1 2 2 2 1 2 12 xxxx 52129 9 3.微積分基本公式 1.積分上限函數(shù) x a dttfx )()( 2.積分上限函數(shù)的導數(shù) )()( xfx )()()( aFbFdxxfba 小結 牛頓萊布尼茨公式溝通了微分學與積 分學之間的關系 10 課堂練習: 計算下列各定積分: 1 . 2 1 2 2 ) 1 ( dx x x ; 2 . 1 1 1 dx e e x x ; 3 . 0 1 2 24 1 133 dx x xx ; 4 . 2 0 s in dxx . 11 練習題解答 dxxx 21 22 )1(.1 dxxdxx 21 21 22 1 2 1 2 1 3 1 3 1 xx 6 52 dxee x x 1 1 1.2 1 1 1 )1( x xeed 1 1)1 l n ( xe 1 12 0 1 2 34 1 133.3 dx x xx 0 1 2 2 ) 1 13( dx xx 0 1 0 1 22 113 dxxdxx 0 10 13 a r c t a n xx 41 20 s i n.4 dxx 20 s i ns i n dxxdxx 20 s i ns i n x d xx d x 20 co sco s xx4

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!