2021年北京市西城區(qū)高考數(shù)學(xué)一模試卷【含答案】

上傳人:精*** 文檔編號:229614661 上傳時間:2023-08-22 格式:DOCX 頁數(shù):17 大?。?7.43KB
收藏 版權(quán)申訴 舉報 下載
2021年北京市西城區(qū)高考數(shù)學(xué)一模試卷【含答案】_第1頁
第1頁 / 共17頁
2021年北京市西城區(qū)高考數(shù)學(xué)一模試卷【含答案】_第2頁
第2頁 / 共17頁
2021年北京市西城區(qū)高考數(shù)學(xué)一模試卷【含答案】_第3頁
第3頁 / 共17頁

下載文檔到電腦,查找使用更方便

6 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2021年北京市西城區(qū)高考數(shù)學(xué)一模試卷【含答案】》由會員分享,可在線閱讀,更多相關(guān)《2021年北京市西城區(qū)高考數(shù)學(xué)一模試卷【含答案】(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2021年北京市西城區(qū)高考數(shù)學(xué)一模試卷參考答案與試題解析一、選擇題共10小題,每小題4分,共40分。在每小題列出的四個選項中,選出符合題目要求的一項。1(4分)已知集合Ax|x1,B1,0,1,2,則AB()A2B1,2C0,1,2Dx|x1【分析】根據(jù)題意,由集合交集的定義,分析兩個集合的公共元素可得答案【解答】解:根據(jù)題意,集合Ax|x1,B1,0,1,2,則AB1,2,故選:B【點評】本題考查集合交集的計算,注意集合交集的定義,屬于基礎(chǔ)題2(4分)已知復(fù)數(shù)z滿足z2i,則z的虛部是()A1B1CiDi【分析】利用待定系數(shù)法設(shè)za+bi,然后利用復(fù)數(shù)相等,求出b的值即可得到答案【解答】解:

2、設(shè)za+bi,因為z2i,則有abi(a+bi)2i,即2bi2i,所以b1,故復(fù)數(shù)z的虛部為1故選:A【點評】本題考查了待定系數(shù)法求解復(fù)數(shù)的應(yīng)用,考查了復(fù)數(shù)相等的定義,屬于基礎(chǔ)題3(4分)在的展開式中,常數(shù)項為()A15B15C30D30【分析】求出展開式的通項公式,然后令x的指數(shù)為0,由此即可求解【解答】解:展開式的通項公式為TC,令63r0,解得r2,所以展開式的常數(shù)項為C15,故選:A【點評】本題考查了二項式定理的應(yīng)用,考查了學(xué)生的運算能力,屬于基礎(chǔ)題4(4分)某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A12BC16D【分析】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面

3、,由此求出四棱錐的表面積【解答】解:由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的表面積為:SS正方形ABCD+SPAB+SPAD+SPBC+SPCD22+22+22+22+228+4故選:D【點評】本題考查了利用三視圖求幾何體表面積,是基礎(chǔ)題5(4分)已知函數(shù),則不等式f(x)0的解集是()A(0,1)B(,2)C(2,+)D(0,2)【分析】根據(jù)題意,求出函數(shù)的定義域,分析可得在(0,+)上是減函數(shù),結(jié)合f(2)0分析可得答案【解答】解:根據(jù)題意,函數(shù),其定義域為(0,+),又由y和函數(shù)ylog2x都是區(qū)間(0,+)上的減函數(shù),則在(0,+

4、)上也是減函數(shù),又由f(2)110,則不等式f(x)0的解集是(0,2),故選:D【點評】本題考查不等式的解法,涉及函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,屬于基礎(chǔ)題6(4分)在ABC中,C90,AC4,BC3,點P是AB的中點,則()AB4CD6【分析】利用向量的數(shù)量積以及向量的線性運算即可求解【解答】解:在ABC中,C90,則0,因為點P是AB的中點,所以(+),所以(+)2+2|2故選:C【點評】本題主要考查平面向量數(shù)量積的運算,考查運算求解能力,屬于基礎(chǔ)題7(4分)在ABC中,C60,a+2b8,sinA6sinB,則c()ABC6D5【分析】直接利用正弦定理和余弦定理的應(yīng)用求出結(jié)果【解答】解:在A

5、BC中,sinA6sinB,利用正弦定理得:a6b,所以,解得,利用余弦定理c2a2+b22abcosC,故c故選:B【點評】本題考查的知識要點:正弦定理,余弦定理的應(yīng)用,主要考查學(xué)生的運算能力和數(shù)學(xué)思維能力,屬于基礎(chǔ)題8(4分)拋物線具有以下光學(xué)性質(zhì):從焦點出發(fā)的光線經(jīng)拋物線反射后平行于拋物線的對稱軸該性質(zhì)在實際生產(chǎn)中應(yīng)用非常廣泛如圖,從拋物線y24x的焦點F發(fā)出的兩條光線a,b分別經(jīng)拋物線上的A,B兩點反射,已知兩條入射光線與x軸所成銳角均為60,則兩條反射光線a和b之間的距離為()ABCD【分析】由拋物線的方程得F(1,0),又OFA60,寫出直線AF的方程,并聯(lián)立拋物線的方程,解得yA

6、,同理解得yB,再計算|yAyB|即可得出答案【解答】解:由y24x,得F(1,0),又OFA60,所以直線AF的方程為y0(x1),即yx+,聯(lián)立,得(y+)2,所以y1或y22(舍去),即yA,同理直線BF的方程為y0(x1),即yx,聯(lián)立,得(y)2,所以y32或y4(舍去),即yB2,所以|yAyB|2|,即兩條反射光線的距離為,故選:C【點評】本題考查拋物線的應(yīng)用,解題中需要理清思路,屬于中檔題9(4分)在無窮等差數(shù)列an中,記Tna1a2+a3a4+a5+(1)n+1an(n1,2,),則“存在mN*,使得TmTm+2”是“an為遞增數(shù)列”的()A充分而不必要條件B必要而不充分條件

7、C充分必要條件D既不充分也不必要條件【分析】根據(jù)等差數(shù)列的性質(zhì),以及充分條件和必要條件的定義進行判斷即可【解答】解:若an為遞增數(shù)列,又Tm+2Tm+(1)m+2am+1+(1)m+3am+2,當(dāng)m為奇數(shù)時,Tm+2Tmam+1+am+2,an遞增數(shù)列,am+2am+1,Tm+2Tm,即mN+,使Tm+2Tm,若mN+,使Tm+2Tm,由Tm+2Tm+(1)m+2am+1+(1)m+3am+2, 即(1)m+2am+1+(1)m+3am+20,當(dāng)為m奇數(shù)時,am+1+am+20,am+2am+1,an遞增數(shù)列,當(dāng)為偶數(shù)時,am+1am+20,am+1am+2,an遞減數(shù)列,綜上所述,mN+,使

8、Tm+2Tm是an為遞增數(shù)列必要不充分條件,故選:B【點評】本題主要考查充分條件和必要條件的判斷和等差數(shù)學(xué)的性質(zhì),屬于基礎(chǔ)題10(4分)若非空實數(shù)集X中存在最大元素M和最小元素m,則記(X)Mm下列命題中正確的是()A已知X1,1,Y0,b,且(X)(Y),則b2B已知Xa,a+2,Yy|yx2,xX,則存在實數(shù)a,使得(Y)1C已知Xx|f(x)g(x),x1,1,若(X)2,則對任意x1,1,都有f(x)g(x)D已知Xa,a+2,Yb,b+3,則對任意的實數(shù)a,總存在實數(shù)b,使得(XY)3【分析】A舉反例判斷;B用反證法,分類討論判斷;C舉反例判斷;D對任意的實數(shù)a,求出b滿足條件即可【

9、解答】解:對于A,因為(X)2,(X)(Y),所以(Y)2,于是b2或2,未必b2,所以A錯;對于B,假設(shè)存在實數(shù)a,使(Y)1,若a0,(Y)(a+2)2a24(a+1)4,矛盾,若a+20,(Y)a2(a+2)24(a+1)4,矛盾,若1a0,(Y)(a+2)21,矛盾,若2a1,(Y)a21,矛盾,若a1,(Y)101,矛盾,所以B錯;對于C,取f(x)|x|,g(x)1,則(X)2,但對任意x1,1,f(x)g(x)不成立,所以C錯;對于D,對任意的實數(shù)a,只須b滿足a,a+2b,b+3,就有XYY,從而(XY)(Y)33,所以D對故選:D【點評】本題以命題真假判斷為載體,考查了集合的

10、基本概念,考查了不等式性質(zhì),屬于中檔題二、填空題共5小題,每小題5分,共25分。11(5分)函數(shù)f(x)lnx+的定義域是x|0x1【分析】根據(jù)函數(shù)f(x)的解析式,列出使解析式有意義的不等式組,從而求出f(x)的定義域【解答】解:函數(shù)f(x)lnx+,解得0x1;函數(shù)f(x)的定義域為x|0x1故答案為:x|0x1【點評】本題考查了求函數(shù)定義域的問題,解題時應(yīng)根據(jù)函數(shù)的解析式,列出使解析式有意義的不等式組,從而求出定義域,是基礎(chǔ)題12(5分)已知雙曲線C:,則C的漸近線方程是;過C的左焦點且與x軸垂直的直線交其漸近線于M,N兩點,O為坐標(biāo)原點,則OMN的面積是【分析】利用雙曲線的標(biāo)準(zhǔn)方程,求

11、解漸近線方程得到第一空;求出M坐標(biāo),然后求解三角形的面積解答第二空【解答】解:雙曲線C:,可得a2,b2,故C的漸近線方程為y,則C的漸近線方程雙曲線的左焦點坐標(biāo)(2,0),過C的左焦點且與x軸垂直的直線交其漸近線于M,N兩點,則M(2,),N(2,),所以O(shè)MN的面積:6故答案為:y;6【點評】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力,是基礎(chǔ)題13(5分)在等比數(shù)列an中,a1+a310,a2+a45,則公比q;若an1,則n的最大值為3【分析】根據(jù)題意,由等比數(shù)列的通項公式可得q,即可得第一空答案,進而求出a1的值,即可得an的通項公式,解an1可得第二空答案【解答】解:根

12、據(jù)題意,等比數(shù)列an中,a1+a310,a2+a45,則q若a1+a310,即a1+a110,解可得a18,則ana1qn18()n1(1)n124n,若an1,即(1)n124n1,必有n1或3,即n的最大值為3,故答案為:,3【點評】本題考查等比數(shù)列的性質(zhì),涉及等比數(shù)列的通項公式,屬于基礎(chǔ)題14(5分)已知函數(shù)f(x)sinx,若對任意xR都有f(x)+f(x+m)c(c為常數(shù)),則常數(shù)m的一個取值為 (答案不唯一,只要是(2k+1)即可)【分析】先對三角函數(shù)恒等變形,要使2sin(x+)cos()c(c為常數(shù)),必有cos()0,再解三角函數(shù)方程求解即可【解答】解:f(x)+f(x+m)

13、sinx+sin(x+m)2sin(x+)cos()2sin(x+)cos()c(c為常數(shù)),所以cos()0,于是+k,m(2k+1),所以常數(shù)m的一個取值為(答案不唯一,只要是(2k+1)即可)故答案為:(答案不唯一,只要是(2k+1)即可)【點評】本題考查了正弦函數(shù)性質(zhì),屬于中檔題15(5分)長江流域水庫群的修建和聯(lián)合調(diào)度,極大地降低了洪澇災(zāi)害風(fēng)險,發(fā)揮了重要的防洪減災(zāi)效益每年洪水來臨之際,為保證防洪需要、降低防洪風(fēng)險,水利部門需要在原有蓄水量的基礎(chǔ)上聯(lián)合調(diào)度,統(tǒng)一蓄水,用蓄滿指數(shù)(蓄滿指數(shù))來衡量每座水庫的水位情況假設(shè)某次聯(lián)合調(diào)度要求如下:()調(diào)度后每座水庫的蓄滿指數(shù)仍屬于區(qū)間0,10

14、0;()調(diào)度后每座水庫的蓄滿指數(shù)都不能降低;()調(diào)度前后,各水庫之間的蓄滿指數(shù)排名不變記x為調(diào)度前某水庫的蓄滿指數(shù),y為調(diào)度后該水庫的蓄滿指數(shù),給出下面四個y關(guān)于x的函數(shù)解析式:;y10;則滿足此次聯(lián)合調(diào)度要求的函數(shù)解析式的序號是 【分析】根據(jù)題意得到,y的定義域為0,100,值域為0,100,yx對任意的x0,100成立且在0,100上單調(diào)遞增,由此對四個選項進行逐一的分析判斷即可【解答】解:由聯(lián)合調(diào)度要求可知,y的定義域為0,100,值域為0,100,yx對任意的x0,100恒成立且在0,100上單調(diào)遞增在0,100上不是單調(diào)函數(shù),故選項錯誤;在0,100上單調(diào)遞增,值域為0,100,又因

15、為對任意的x0,100恒成立,所以yx對任意的x0,100恒成立,故選項正確;對任意的x0,100不恒成立,比如,故選項錯誤;在0,100上單調(diào)遞增,值域為0,100,令,則,令f(x)0,解得xx0,則當(dāng)x(0,x0)時,f(x)0,則f(x)單調(diào)遞增,當(dāng)x(x0,100)時,f(x)0,則f(x)單調(diào)遞減,又f(0)0,f(100)0,所以f(x)0在0,100上恒成立,故yx對任意的x0,100恒成立,故選項正確故答案為:【點評】本題考查了函數(shù)性質(zhì)的綜合應(yīng)用,涉及了利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的運用,考查了邏輯推理能力與化簡運算能力,屬于中檔題三、解答題共6小題,共85分。解答應(yīng)寫出文字說明,演

16、算步驟或證明過程。16(13分)如圖,在正方體ABCDA1B1C1D1中,E為DD1的中點()求證:BD1平面ACE;()求直線AD與平面ACE所成角的正弦值【分析】()連接BD交AC于點O,連接OE,證明OEBD1.然后證明BD1平面ACE()不妨設(shè)正方體的棱長為2,建立空間直角坐標(biāo)系A(chǔ)xyz求出平面ACE的法向量,利用空間向量的數(shù)量積求解直線AD與平面ACE所成角的正弦值即可【解答】()證明:連接BD交AC于點O,連接OE,在正方形ABCD中,OBOD因為E為DD1的中點,所以O(shè)EBD1.(3分)因為BD1平面ACE,OE平面ACE,所以BD1平面ACE (5分)()解:不妨設(shè)正方體的棱長

17、為2,建立如圖所示的空間直角坐標(biāo)系A(chǔ)xyz則A(0,0,0),C(2,2,0),D(0,2,0),E(0,2,1),所以, (8分)設(shè)平面ACE的法向量為(x,y,z),所以所以即(10分)令y1,則x1,z2,于是(1,1,2)(11分)設(shè)直線AD與平面ACE所成角為,則(13分)所以直線AD與平面ACE所成角的正弦值為【點評】本題考查直線與平面平行的判定定理的應(yīng)用,直線與平面所成角的求法,考查空間想象能力,轉(zhuǎn)化思想以及計算能力,是中檔題17(13分)已知函數(shù),且f(x)圖象的相鄰兩條對稱軸之間的距離為,再從條件、條件、條件中選擇兩個作為一組已知條件()確定f(x)的解析式:()若f(x)圖

18、象的對稱軸只有一條落在區(qū)間0,a上,求a的取值范圍條件:f(x)的最小值為2;條件:f(x)圖象的一個對稱中心為(,0);條件:f(x)的圖象經(jīng)過點(,1)【分析】()先根據(jù)已知求出f(x)的最小正周期,即可求解,再根據(jù)所選條件,利用正弦函數(shù)的性質(zhì)求解A和的值,從而可得f(x)的解析式;()由正弦函數(shù)的圖象與性質(zhì)可得關(guān)于a的不等式,即可求解【解答】解:()由于函數(shù)f(x)圖象上兩相鄰對稱軸之間的距離為,所以f(x)的最小正周期,此時f(x)Asin(2x+)選條件:因為f(x)的最小值為A,所以A2因為f(x)圖象的一個對稱中心為,所以,所以,因為,所以,此時k1,所以選條件:因為f(x)的最

19、小值為A,所以A2因為函數(shù)f(x)的圖象過點,則,即,因為,所以,所以,所以選條件:因為函數(shù)f(x)的一個對稱中心為,所以,所以因為,所以,此時k1所以因為函數(shù)f(x)的圖象過點,所以,即,所以A2,所以()因為x0,a,所以,因為f(x)圖象的對稱軸只有一條落在區(qū)間0,a上,所以,得,所以a的取值范圍為【點評】本題主要考查由yAsin(x+)的部分圖象確定其解析式,正弦函數(shù)的圖象與性質(zhì),考查運算求解能力,屬于中檔題18(14分)天文學(xué)上用星等表示星體亮度,星等的數(shù)值越小、星體越亮視星等是指觀測者用肉眼所看到的星體亮度;絕對星等是假定把恒星成放在距地球32.6光年的地方測得的恒星的亮度,反映恒

20、星的真實發(fā)光本領(lǐng)如表列出了(除太陽外)視星等數(shù)值最小的10顆最充恒星的相關(guān)數(shù)據(jù),其中a0,1.3星名天狼星老人星南門二大角星織女一五車二參宿七南河三水委一參宿四*視星等1.470.720.270.040.030.080.120.380.46a絕對星等1.425.534.40.380.60.16.982.672.785.85赤緯16.752.760.819.238.8468.25.257.27.4()從表中隨機選擇一顆恒星,求它的絕對星等的數(shù)值小于視星等的數(shù)值的概率;()已知北京的緯度是北緯40,當(dāng)且僅當(dāng)一顆恒星的“赤緯”數(shù)值大于50時,能在北京的夜空中看到它,現(xiàn)從這10顆恒星中隨機選擇4顆,記

21、其中能在北京的夜空中看到的數(shù)量為X顆,求X的分布列和數(shù)學(xué)期望;()記a0時10顆恒星的視星等的方差為s12,記a1.3時10顆恒星的視星等的方差為s22,判斷s12與s22之間的大小關(guān)系(結(jié)論不需要證明)【分析】()由圖表中的數(shù)據(jù)可知有5顆恒星絕對星等的數(shù)值小于視星等的數(shù)值,由古典概型的概率公式求解即可;()首先確定X的所有可能取值,利用超幾何分布的概率公式計算得到每個取值對應(yīng)的概率,列出分布列,由數(shù)學(xué)期望的計算公式求解期望即可;()根據(jù)數(shù)據(jù)的波動程度可得方差的大小關(guān)系【解答】解:()設(shè)一顆星的絕對星等的數(shù)值小于視星等的數(shù)值為事件A,由圖表可知,10顆恒星有5顆恒星絕對星等的數(shù)值小于視星等的數(shù)

22、值,所以;()由圖表知,有7顆恒星的“赤緯”數(shù)值大于50,有3顆恒星的“赤緯”數(shù)值小于50,所以隨機變量X的所有可能取值為:1,2,3,4,所以,所以隨機變量X的分布列為:X1234P所以X的數(shù)學(xué)期望為;()結(jié)論:【點評】本題考查了古典概型的概率公式的應(yīng)用,離散型隨機變量及其分布列的求解,數(shù)學(xué)期望公式的運用,考查了邏輯推理能力與化簡運算能力,屬于中檔題19(15分)已知函數(shù)f(x)ex(lnxa)()若a1,求曲線yf(x)在點(1,f(1)處的切線方程;()若a1,求證:函數(shù)f(x)存在極小值;()若對任意的實數(shù)x1,+),f(x)1恒成立,求實數(shù)a的取值范圍【分析】()當(dāng)a1時,f(x)e

23、x(lnx1),求導(dǎo)得f(x),由導(dǎo)數(shù)的幾何意義可得k切f(1),進而可得切線方程()由f(x)ex(lnxa),求導(dǎo)得,令,根據(jù)h(x)的正負,得到f(x)的單調(diào)性,再確定f(x)的極小值()對任意的實數(shù)x1,+),f(x)1恒成立等價于f(x)的最小值大于或等于1,分a1和a1,兩種情況討論,即可得出答案【解答】解:()當(dāng)a1時,f(x)ex(lnx1),所以,所以f(1)e,f(1)0,曲線yf(x)在點(1,f(1)處的切線方程為ye()由f(x)ex(lnxa),得,令,則,當(dāng)0x1時,h(x)0,當(dāng)x1時,h(x)0,所以h(x)在區(qū)間(0,1)上是減函數(shù),在區(qū)間(1,+)上是增函

24、數(shù)所以h(x)的最小值為h(1)1a,當(dāng)a1時,h(1)1a0,h(ea)ea0,又h(x)在(1,+)單調(diào)遞增,故存在,使得h(x0)0,所以在區(qū)間(1,x0)上h(x)0,在區(qū)間(x0,+)上h(x)0,所以在區(qū)間(1,x0)上f(x)0,在區(qū)間(x0,+)上f(x)0,所以在區(qū)間(1,x0)上f(x)單調(diào)遞減,在區(qū)間(x0,+)上f(x)單調(diào)遞增,故函數(shù)f(x)存在極小值()對任意的實數(shù)x1,+),f(x)1恒成立等價于f(x)的最小值大于或等于1當(dāng)a1時,h(1)1a0,由()得h(x)0,所以f(x)0所以f(x)在1,+)上單調(diào)遞增,所以f(x)的最小值為f(1)ae,由ae1,得

25、,滿足題意,當(dāng)a1時,由()知,f(x)在(1,x0)上單調(diào)遞減,所以在(1,x0)上f(x)f(1)aee,不滿足題意綜上所述,實數(shù)a的取值范圍是【點評】本題考查導(dǎo)數(shù)的綜合應(yīng)用,導(dǎo)數(shù)的幾何意義,考查了分類討論思想,屬于中檔題20(15分)已知橢圓C:(a0)的焦點在x軸上,且經(jīng)過點E(1,),左頂點為D,右焦點為F()求橢圓C的離心率和DEF的面積;()已知直線ykx+1與橢圓C交于A,B兩點過點B作直線yt(t)的垂線,垂足為G判斷是否存在常數(shù)t,使得直線AG經(jīng)過y軸上的定點?若存在,求t的值;若不存在,請說明理由【分析】()由橢圓C經(jīng)過點E(1,),得,解得a,由c2a2b2,解得c,進

26、而可得離心率e,DEF的面積()根據(jù)題意直線DE的方程為,G(1,t)時,直線AG的方程為,進而可得與y軸交點,若直線AG經(jīng)過y軸上定點,則,解得t3,下面證明存在實數(shù)t3,使得直線AG經(jīng)過y軸上定點(0,2),即可得出答案【解答】解:()依題意,解得a2因為c2a2b2431,即c1,所以D(2,0),F(xiàn)(1,0),所以離心率,所以DEF的面積()由已知,直線DE的方程為,當(dāng)A(2,0),G(1,t)時,直線AG的方程為,交y軸于點,當(dāng),B(2,0),G(2,t)時,直線AG的方程為,交y軸于點,若直線AG經(jīng)過y軸上定點,則,即t3,直線AG交y軸于點(0,2)下面證明存在實數(shù)t3,使得直線

27、AG經(jīng)過y軸上定點(0,2),聯(lián)立消y整理,得(4k2+3)x2+8kx80,設(shè)A(x1,y1),B(x2,y2),則,設(shè)點G(x2,3),所以直線AG的方程:,令x0,得,因為kx1x2x1+x2,所以,所以直線AG過定點(0,2),綜上,存在實數(shù)t3,使得直線AG經(jīng)過y軸上定點(0,2)【點評】本題考查直線與橢圓的相交問題,解題中需要易得計算能力,屬于中檔題21(15分)已知數(shù)列A:a1,a2,aN(N3)的各項均為正整數(shù),設(shè)集合Tx|xajai,1ijN,記T的元素個數(shù)為P(T)()若數(shù)列A:1,2,4,3,求集合T,并寫出P(T)的值;()若A是遞增數(shù)列,求證:“P(T)N1”的充要條

28、件是“A為等差數(shù)列”;()若N2n+1,數(shù)列A由1,2,3,n,2n這n+1個數(shù)組成,且這n+1個數(shù)在數(shù)列A中每個至少出現(xiàn)一次,求P(T)的取值個數(shù)【分析】()利用集合T的定義直接求解即可;()分充分性和必要性兩個方面分別證明,利用題中給出的集合T的定義分析即可;()通過分析可知P(T)4n1,且P(T)2n,設(shè)數(shù)列A0:1,1,2,2,3,3,4,4,n,n,2n,此時T0,1,2,2n1,P(T)2n然后對數(shù)列A0分別作變換進行分析求解,即可得到答案【解答】()解:因為a11,a22,a34,a43,所以T1,2,3,1,P(T)4;()證明:充分性:若A是等差數(shù)列,設(shè)公差為d因為數(shù)列A是

29、遞增數(shù)列,所以d0則當(dāng)ji時,ajai(ji)d所以Td,2d,(N1)d,P(T)N1,必要性:若P(T)N1因為A是遞增數(shù)列,所以a2a1a3a1aNa1,所以a2a1,a3a1,aNa1T,且互不相等所以Ta2a1,a3a1,aNa1又a3a2a4a2aN1a2aNa2aNa1,所以a3a2,a4a2,aNa2,aNa1T,且互不相等所以a3a2a2a1,a4a2a3a1,aNa2aN1a1所以a2a1a3a2aNaN1,所以A為等差數(shù)列;()解:因為數(shù)列A由1,2,3,n,2n這n+1個數(shù)組成,任意兩個不同的數(shù)作差,差值只可能為1,2,3,(n1)和(2n1),(2n2),n共2(n1

30、)+2n4n2個不同的值;且對任意的m1,2,3,n1,n,2n1,m和m這兩個數(shù)中至少有一個在集合T中,又因為1,2,3,n,2n這n+1個數(shù)在數(shù)列A中共出現(xiàn)N2n+1次,所以數(shù)列A中存在aiaj(ij),所以0T綜上,P(T)4n1,且P(T)2n設(shè)數(shù)列A0:1,1,2,2,3,3,4,4,n,n,2n,此時T0,1,2,2n1,P(T)2n現(xiàn)對數(shù)列A0分別作如下變換:把一個1移動到2,3之間,得到數(shù)列:1,2,2,1,3,3,4,4,n,n,2n,此時T0,1,2,3,(2n1),1,P(T)2n+1把一個1移動到3,4之間,得到數(shù)列:1,2,2,3,3,1,4,4,n,n,2n,此時T

31、0,1,2,3,(2n1),1,2,P(T)2n+2把一個1移動到n1,n之間,得到數(shù)列:1,2,2,3,3,4,4,n1,n1,1,n,n,2n,此時T0,1,2,3,(2n1),1,2,2n,P(T)2n+n23n2把一個1移動到n,2n之間,得到數(shù)列:1,2,2,3,3,4,4,n,n,1,2n,此時T0,1,2,3,2n1,1,2,1n,P(T)2n+n13n1再對數(shù)列A0依次作如下變換:把一個1移為2n的后一項,得到數(shù)列A1:1,2,2,3,3,4,4,n,n,2n,1,此時T0,1,2,3,2n1,1,2,1n,12n,P(T)3n;再把一個2移為2n的后一項:得到數(shù)列A2:1,2,3,3,4,4,n,n,2n,2,1,此時T0,1,2,3,2n1,1,2,1n,12n,22n,P(T)3n+1;依此類推,最后把一個n移為2n的后一項:得到數(shù)列An:1,2,3,4,n,2n,n,n1,2,1,此時T0,1,2,3,2n1,1,2,1n,12n,22n,n,P(T)4n1綜上所述,P(T)可以取到從2n到4n1的所有2n個整數(shù)值,所以P(T)的取值個數(shù)為2n【點評】本題以數(shù)列知識為背景考查了新定義問題,解決此類問題,關(guān)鍵是讀懂題意,理解新定義的本質(zhì),把新情境下的概念、法則、運算化歸到常規(guī)的數(shù)學(xué)背景中,運用相關(guān)的數(shù)學(xué)公式、定理、性質(zhì)進行解答,屬于難題

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!