《河南中考數學試題答案》由會員分享,可在線閱讀,更多相關《河南中考數學試題答案(4頁珍藏版)》請在裝配圖網上搜索。
1、 中考網
2011年河南省初中學業(yè)水平暨高級中等學校招生考試
數學試題參考答案及評分標準
說明:
1.如果考生的解答與與本參考答案提供的解法不同,可根據提供的解法的評分標準精神進行評分.
2.評閱試卷,要堅持每題評閱到底,不能因考生解答中出現錯誤而中斷對本題的評閱.如果考生的解答在某一步出現錯誤,影響后繼部分而未改變本題的內容和難度,視影響的程度決定對后面給分的多少,但原則上不超過后繼部分應得分數之半.
3.評分標準中,如無特殊說明,均為累計給分.
4.評分過程中,只給整數分數.
一、選擇題(每小題3分,共18分)
題號
1
2、
2
3
4
5
6
答案
A
B
D
B
D
C
二、填空題(每小題3分,共27分)
題號
7
8
9
10
11
12
13
14
15
答案
3
72
-2
40
<
4
90π
3+
(注:若第8題填為72,第10題填為40,不扣分)
三、解答題(本大題共8個小題,滿分75分 )
16.原式=…………………………………………………………3分=.……………………………………………………………………………5分
x滿足-2≤x≤2且為整數,若使分式有意義,x只能取0,-2.……………………7分
當x=0時,原式=(或
3、:當x=-2時,原式=). …………………………8分
17.(1)∵AD∥BC,∴∠A=MBE,∠ADM=∠E. …………………………………2分
在△AMD和△BME中,
∴△AMD≌△BME. ……………………………………5分
∠A=∠MBE,
AD=BE,
∠ADM=E,
(2)∵△AMD≌△BME,∴MD=ME.
又ND=NC,∴MN=EC. ……………………………………………………………7分
∴EC=2MN=25=10.
∴BC=EC-EB=10-2=8. …………………………………………………………9分
18.(1)(C選項的頻數為90,正
4、確補全條形統(tǒng)計圖);……………………………2分
20.………………………………………………………………………………………4分
(2)支持選項B的人數大約為:500023%=1150.……………………………………6分
(3)小李被選中的概率是:………………………………………………9分
19. ∵DE∥BO,α=45,
∴∠DBF=α=45.
∴Rt△DBF中,BF=DF=268.…………………………………………………………2分
∵BC=50,
∴CF=BF-BC=268-50=218.
由題意知四邊形DFOG是矩形,
∴FO=DG=10.
∴CO=CF+FO=2
5、18+10=228.……………………………………………………………5分
在Rt△ACO中,β=60,
∴AO=COtan60≈2281.732=394.896……………………………………………7分
∴誤差為394.896-388=6.896≈6.9(米).
即計算結果與實際高度的誤差約為6.9米.…………………………………………9分
20. (1),16;………………………………………………………………2分
(2)-8<x<0或x>4;…………………………………………………………4分
(3)由(1)知,
∴m=4,點C的坐標是(0,2)點A的坐標是(4,4).
∴CO=2,A
6、D=OD=4.………………………………………………………………5分
∴
∵
∴……………………………………………7分
即ODDE=4,∴DE=2.
∴點E的坐標為(4,2).
又點E在直線OP上,∴直線OP的解析式是.
∴直線OP與的圖象在第一象限內的交點P的坐標為().
…………………………………………………………………………………………9分
21.(1)設兩校人數之和為a.
若a>200,則a=18 00075=240.
若100<a≤200,則,不合題意.
所以這兩所學校報名參加旅游的學生人數之和等于240人,超過200人.……3分
(2)設甲學校報名參加旅游的
7、學生有x人,乙學校報名參加旅游的學生有y人,則
①當100<x≤200時,得
解得………………………………………………………………………………6分
②當x>200時,得
解得
此解不合題意,舍去.
∴甲學校報名參加旅游的學生有160人,乙學校報名參加旅游的學生有80人.
………………………………………………………………………………………………10分
22.(1)在△DFC中,∠DFC=90,∠C=30,DC=2t,∴DF=t.
又∵AE=t,∴AE=DF.…………………………………………………………………………2分
(2)能.理由如下:
∵AB⊥BC,DF⊥BC,∴A
8、E∥DF.
又AE=DF,∴四邊形AEFD為平行四邊形.…………………………………………………3分
∵AB=BCtan30=
若使為菱形,則需
即當時,四邊形AEFD為菱形.……………………………………………………5分
(3)①∠EDF=90時,四邊形EBFD為矩形.
在Rt△AED中,∠ADE=∠C=30,∴AD=2AE.即10-2t=2t,.………………7分
②∠DEF=90時,由(2)知EF∥AD,∴∠ADE=∠DEF=90.
∵∠A=90-∠C=60,∴AD=AEcos60.
即…………………………………………………………………………9分
③∠EFD=90時,
9、此種情況不存在.
綜上所述,當或4時,△DEF為直角三角形.……………………………………10分
23.(1)對于,當y=0,x=2.當x=-8時,y=-
∴A點坐標為(2,0),B點坐標為…………………………………………1分
由拋物線經過A、B兩點,得
解得…………………………………………3分
(2)①設直線與y軸交于點M
當x=0時,y=. ∴OM=.
∵點A的坐標為(2,0),∴OA=2.∴AM=……………………4分
∵OM:OA:AM=3∶4:5.
由題意得,∠PDE=∠OMA,∠AOM=∠PED=90,∴△AOM~△PED.
∴DE:PE:PD=3∶4:5.…
10、………………………………………………………………5分
∵點P是直線AB上方的拋物線上一動點,
∴PD=yP-yD
=.………………………………………………………………………6分
∴
…………………………………………………………………7分
……………………………………8分
②滿足題意的點P有三個,分別是
……………………………………………………………11分
【解法提示】
當點G落在y軸上時,由△ACP≌△GOA得PC=AO=2,即,解得,所以
當點F落在y軸上時,同法可得,
(舍去).
中國最大的教育門戶網站 中考網