《高考數(shù)學(xué)理二輪復(fù)習(xí)教師用書:第1部分 重點強化專題 專題6 第15講 函數(shù)與方程 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)理二輪復(fù)習(xí)教師用書:第1部分 重點強化專題 專題6 第15講 函數(shù)與方程 Word版含答案(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5第15講函數(shù)與方程題型1函數(shù)零點個數(shù)的判斷(對應(yīng)學(xué)生用書第50頁)核心知識儲備·1零點存在性定理如果函數(shù)yf(x)在區(qū)間a,b上的圖象是連續(xù)不斷的一條曲線,且有f(a)·f(b)<0,那么,函數(shù)yf(x)在區(qū)間(a,b)內(nèi)有零點,即存在c(a,b)使得f(c)0,這個c也就是方程f(x)0的根2函數(shù)的零點與方程根的關(guān)系函數(shù)F(x)f(x)g(x)的零點就是方程f(x)g(x)的根,即函數(shù)yf(x)的圖象與函數(shù)yg(x)的圖象交點的橫坐標典題試解尋法·【典題1】(考查數(shù)形結(jié)合法判斷函數(shù)的零點個數(shù))已知定義在R上的函數(shù)f(x)滿
2、足:圖象關(guān)于(1,0)點對稱;f(1x)f(1x);當x1,1時,f(x)則函數(shù)yf(x)在區(qū)間3,3上的零點個數(shù)為()A5B6C7D8思路分析函數(shù)yf(x)在區(qū)間3,3上的零點個數(shù)函數(shù)yf(x)與函數(shù)y在3,3上的圖象交點個數(shù)下結(jié)論解析因為f(1x)f(1x),所以函數(shù)f(x)的圖象關(guān)于直線x1對稱,又函數(shù)f(x)的圖象關(guān)于點(1,0)對稱,如圖,畫出f(x)以及g(x)在3,3上的圖象由圖可知,兩函數(shù)圖象的交點個數(shù)為5,所以函數(shù)yf(x)在區(qū)間3,3上的零點個數(shù)為5,故選A.答案A【典題2】(考查應(yīng)用零點存在性定理判斷函數(shù)的零點個數(shù))已知函數(shù)fn(x)xln x(nN*,e2.718 28
3、為自然對數(shù)的底數(shù))(1)求曲線yf1(x)在點(1,f1(1)處的切線方程;(2)討論函數(shù)fn(x)的零點個數(shù). 【導(dǎo)學(xué)號:07804105】解(1)因為f1(x)xln xx2,所以f1(x)ln x12x,所以f1(1)121.又f1(1)1,所以曲線yf1(x)在點(1,f1(1)處的切線方程為y1(x1),即yx.(2)令fn(x)0,得xln x0(nN*,x>0),所以nln xx0.令g(x)nln xx,則函數(shù)fn(x)的零點與函數(shù)g(x)nln xx的零點相同因為g(x)1,令g(x)0,得xn,所以當x>n時,g(x)<0;當0<x<n時g(x
4、)>0,所以函數(shù)g(x)在區(qū)間(0,n上單調(diào)遞增,在區(qū)間n,)上單調(diào)遞減所以函數(shù)g(x)在xn處有最大值,且g(n)nln nn.當n1時,g(1)ln 111<0,所以函數(shù)g(x)nln xx的零點個數(shù)為0;當n2時,g(2)2ln 22<2ln e20,所以函數(shù)g(x)nln xx的零點個數(shù)為0;當n3時,g(n)nln nnn(ln n1)n(ln 31)>n(ln e1)0,因為g(e2n)nln e2ne2n<2n24n2n2(13)n<2n2<2n213n3n(n1)n21<0,且g(1)<0,所以由函數(shù)零點的存在性定理,可得函
5、數(shù)g(x)nln xx在區(qū)間(1,n)和(n,)內(nèi)都恰有一個零點所以函數(shù)g(x)nln xx的零點個數(shù)為2.綜上所述,當n1或n2時,函數(shù)fn(x)的零點個數(shù)為0;當n3且nN*時,函數(shù)fn(x)的零點個數(shù)為2.類題通法1.求函數(shù)零點個數(shù)的兩種方法:(1)由函數(shù)零點存在性定理,結(jié)合函數(shù)的單調(diào)性判斷;(2)由函數(shù)的單調(diào)性及函數(shù)極值的正負來確定.2.零點個數(shù)的討論,對于不可求的零點,需要通過方程轉(zhuǎn)化為初等函數(shù)的交點個數(shù)判斷.3.零點討論中的參數(shù),針對參數(shù)的討論有兩個方向:一是方程根的個數(shù);二是參數(shù)對構(gòu)造的初等函數(shù)圖象形狀的影響.對點即時訓(xùn)練·1已知函數(shù)f(x),則函數(shù)F(x)ff(x)2
6、f(x)的零點個數(shù)是()A4B5C6D7A(數(shù)形結(jié)合思想)令f(x)t,則函數(shù)F(x)可化為yf(t)2t,則函數(shù)F(x)的零點問題可轉(zhuǎn)化為方程f(t)2t0有根的問題令yf(t)2t0,即f(t)2t,如圖(1),由數(shù)形結(jié)合得t10,1<t2<2,如圖(2),再由數(shù)形結(jié)合得,當f(x)0時,x2,有1個解,當f(x)t2時,有3個解,所以F(x)ff(x)2f(x)共有4個零點故選A.圖(1)圖(2)2函數(shù)f(x)cos 2x在區(qū)間3,3上零點的個數(shù)為()A3B4C5D6 C設(shè)函數(shù)g(x)1x,h(x)cos 2x,則f(x)g(x)h(x),g(x)1xx2x3x2 015x2
7、 016(1x)x2(1x)x2 014(1x)x2 016.當3x1時,顯然g(x)0;g(x)1x(x1)x3(x1)x2 015(x1),當1<x3時,顯然g(x)>0,所以g(x)在區(qū)間3,3上是增函數(shù),又g(1)<0,g(0)1>0,所以g(x)在區(qū)間3,3上有且只有1個零點x0(1,0),且x0.h(x)cos 2x在區(qū)間3,3上有4個零點:,所以函數(shù)f(x)g(x)h(x)在區(qū)間3,3上有5個零點題型強化集訓(xùn)·(見專題限時集訓(xùn)T2、T5、T6、T13、T14)題型2已知函數(shù)的零點個數(shù)求參數(shù)的取值范圍(對應(yīng)學(xué)生用書第51頁)核心知識儲備·
8、已知函數(shù)有零點(方程有根或圖象有交點)求參數(shù)的值或取值范圍常用的方法:直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的方程或不等式,再通過解方程或不等式確定參數(shù)的值或取值范圍分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)最值問題加以解決數(shù)形結(jié)合法:在同一平面直角坐標系中畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解典題試解尋法·【典題1】(考查已知函數(shù)的零點個數(shù)求參數(shù)范圍)(20xx·太原二模)已知f(x)x2ex,若函數(shù)g(x)f2(x)kf(x)1恰有四個零點,則實數(shù)k的取值范圍是()A(,2)(2,)B.C.D思路分析f(x)x2ex畫f(x)的圖象g(x)有四個零點方程t2kt10在和各有1解實數(shù)
9、k的取值范圍解析(數(shù)形結(jié)合思想)f(x)xex(x2),令f(x)>0,得f(x)的單調(diào)遞增區(qū)間為(,2),(0,),令f(x)<0,得f(x)的單調(diào)遞減區(qū)間為(2,0),所以f(2)4e2>0為函數(shù)f(x)的極大值,f(0)0為函數(shù)f(x)的極小值,故f(x)0,作出其函數(shù)圖象如圖所示因為函數(shù)g(x)f2(x)kf(x)1恰有四個零點,令f(x)t,則關(guān)于t的方程t2kt10有兩個不相同的根,記為t1,t2,且0<t1<4e2,4e2<t2,所以,解得k>,故選D.答案D【典題2】(考查已知方程根的個數(shù)求參數(shù)范圍)已知函數(shù)f(x),其中m>0.
10、若存在實數(shù)b,使得關(guān)于x的方程f(x)b有三個不同的根,則m的取值范圍是_. 【導(dǎo)學(xué)號:07804106】思路分析方程f(x)b有三個不同的根函數(shù)f(x)與函數(shù)yb有三個不同的交點依據(jù)m的取值畫函數(shù)f(x)的圖象求m的取值范圍解析f(x)當x>m時,f(x)x22mx4m(xm)24mm2,其頂點為(m,4mm2);當xm時,函數(shù)f(x)的圖象與直線xm的交點為Q(m,m)當即0<m3時,函數(shù)f(x)的圖象如圖(1)所示,易得直線yb與函數(shù)f(x)的圖象有一個或兩個不同的交點,不符合題意;當即m>3時,函數(shù)f(x)的圖象如圖(2)所示,則存在實數(shù)b滿足4mm2<bm,使
11、得直線yb與函數(shù)f(x)的圖象有三個不同的交點,符合題意綜上,m的取值范圍為(3,)圖(1) 圖(2)答案(3,)【典題3】(考查導(dǎo)數(shù)在函數(shù)零點中的應(yīng)用)(20xx·全國卷節(jié)選)已知函數(shù)f(x)(x2)exa(x1)2有兩個零點,求a的取值范圍思路分析求f(x)求函數(shù)的單調(diào)性及極值確定a的取值范圍解f(x)(x1)ex2a(x1)(x1)(ex2a)設(shè)a0,則f(x)(x2)ex,f(x)只有一個零點設(shè)a0,則當x(,1)時,f(x)0;當x(1,)時,f(x)0,所以f(x)在(,1)內(nèi)單調(diào)遞減,在(1,)內(nèi)單調(diào)遞增又f(1)e,f(2)a,取b滿足b0且bln ,則f(b)(b2
12、)a(b1)2a0,故f(x)存在兩個零點設(shè)a0,由f(x)0得x1或xln(2a)若a,則ln(2a)1,故當x(1,)時,f(x)0,因此f(x)在(1,)內(nèi)單調(diào)遞增又當x1時,f(x)0,所以f(x)不存在兩個零點若a<,則ln(2a)1,故當x(1,ln(2a)時,f(x)0;當x(ln(2a),)時,f(x)0.因此f(x)在(1,ln(2a)內(nèi)單調(diào)遞減,在(ln(2a),)內(nèi)單調(diào)遞增又當x1時,f(x)0,所以f(x)不存在兩個零點綜上,a的取值范圍為(0,) 類題通法已知函數(shù)的零點個數(shù)求參數(shù)取值范圍問題的關(guān)鍵有以下幾點:一是將原函數(shù)的零點個數(shù)問題轉(zhuǎn)化為方程根的個數(shù)問題,并進
13、行適當化簡、整理;二是構(gòu)造新的函數(shù),把方程根的個數(shù)問題轉(zhuǎn)化為新構(gòu)造的兩個函數(shù)的圖象交點個數(shù)問題;三是對新構(gòu)造的函數(shù)進行畫圖;四是觀察圖象,得參數(shù)的取值范圍.對點即時訓(xùn)練·1設(shè)x表示不小于實數(shù)x的最小整數(shù),如2.63,3.53.已知函數(shù)f(x)x22x,若函數(shù)F(x)f(x)k(x2)2在(1,4上有兩個零點,則實數(shù)k的取值范圍是()A.2,5)B.5,10)C.5,10)D.5,10)B令F(x)0,得f(x)k(x2)2,作出函數(shù)yf(x)和yk(x2)2的圖象如圖所示若函數(shù)F(x)f(x)k(x2)2在(1,4上有兩個零點,則函數(shù)f(x)和g(x)k(x2)2的圖象在(1,4上有
14、兩個交點因為g(x)過定點P(2,2),經(jīng)計算可得kPA5,kPB10,kPO1,kPC,所以k的取值范圍是5,10)故選B.2已知函數(shù)f(x)ex,若關(guān)于x的不等式f(x)22f(x)a0在0,1上有解,則實數(shù)a的取值范圍為_. 【導(dǎo)學(xué)號:07804107】(,e22e由f(x)22f(x)a0在0,1上有解,可得af(x)22f(x),即ae2x2ex.令g(x)e2x2ex(0x1),則ag(x)max,因為0x1,所以1exe,則當exe,即x1時,g(x)maxe22e,即ae22e,故實數(shù)a的取值范圍是(,e22e 題型強化集訓(xùn)·(見專題限時集訓(xùn)T1、T3、T4、T7、T
15、8、T9、T10、T11、T12)三年真題| 驗收復(fù)習(xí)效果(對應(yīng)學(xué)生用書第52頁)1.(20xx·全國卷)已知函數(shù)f(x)x22xa(ex1ex1)有唯一零點,則a()ABCD1C法一:(換元法)f(x)x22xa(ex1ex1)(x1)2aex1e(x1)1,令tx1,則g(t)f(t1)t2a(etet)1.g(t)(t)2a(etet)1g(t),函數(shù)g(t)為偶函數(shù)f(x)有唯一零點,g(t)也有唯一零點又g(t)為偶函數(shù),由偶函數(shù)的性質(zhì)知g(0)0,2a10,解得a.故選C.法二:(等價轉(zhuǎn)化法)f(x)0a(ex1ex1)x22x.ex1ex122,當且僅當x1時取“”x2
16、2x(x1)211,當且僅當x1時取“”若a0,則a(ex1ex1)2a,要使f(x)有唯一零點,則必有2a1,即a.若a0,則f(x)的零點不唯一故選C.2(20xx·全國卷)已知函數(shù)f(x)ax33x21,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是() 【導(dǎo)學(xué)號:07804108】A(2,)B(,2)C(1,)D(,1)Bf(x)3ax26x,當a3時,f(x)9x26x3x(3x2),則當x(,0)時,f(x)>0;x時,f(x)<0;x時,f(x)>0,注意f(0)1,f>0,則f(x)的大致圖象如圖(1)所示圖(1)不符合題意,
17、排除A、C.當a時,f(x)4x26x2x(2x3),則當x時,f(x)<0,x時,f(x)>0,x(0,)時,f(x)<0,注意f(0)1,f,則f(x)的大致圖象如圖(2)所示圖(2)不符合題意,排除D.3.(20xx·全國卷)已知函數(shù)f(x)ae2x(a2)exx.(1)討論f(x)的單調(diào)性; (2)若f(x)有兩個零點,求a的取值范圍. 解(分類討論思想)(1)f(x)的定義域為(,),f(x)2ae2x(a2)ex1(aex1)(2ex1)()若a0,則f(x)<0,所以f(x)在(,)單調(diào)遞減()若a>0,則由f(x)0得xln a.當x(,
18、ln a)時,f(x)<0;當x(ln a,)時,f(x)>0.所以f(x)在(,ln a)單調(diào)遞減,在(ln a,)單調(diào)遞增(2)()若a0,由(1)知,f(x)至多有一個零點()若a>0,由(1)知,當xln a時,f(x)取得最小值,最小值為f(ln a)1ln a.當a1時,由于f(ln a)0,故f(x)只有一個零點;當a(1,)時,由于1ln a0,即f(ln a)>0,故f(x)沒有零點;當a(0,1)時,1ln a0,即f(ln a)0.又f(2)ae4(a2)e22>2e22>0,故f(x)在(,ln a)有一個零點設(shè)正整數(shù)n0滿足n0ln,則f(n0)e(aea2)n0en02n00.由于lnln a,因此f(x)在(ln a,)有一個零點綜上,a的取值范圍為(0,1)