全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題13 立體幾何中的向量方法 理含解析

上傳人:仙*** 文檔編號:40481749 上傳時間:2021-11-16 格式:DOC 頁數(shù):14 大?。?45KB
收藏 版權(quán)申訴 舉報 下載
全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題13 立體幾何中的向量方法 理含解析_第1頁
第1頁 / 共14頁
全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題13 立體幾何中的向量方法 理含解析_第2頁
第2頁 / 共14頁
全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題13 立體幾何中的向量方法 理含解析_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題13 立體幾何中的向量方法 理含解析》由會員分享,可在線閱讀,更多相關(guān)《全國通用高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題13 立體幾何中的向量方法 理含解析(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學精品復(fù)習資料 2019.5 【走向高考】(全國通用)20xx高考數(shù)學二輪復(fù)習 第一部分 微專題強化練 專題13 立體幾何中的向量方法 理 一、選擇題 1.(20xx北京理,7)在空間直角坐標系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1、S2、S3分別是三棱錐D-ABC在xOy、yOz、zOx坐標平面上的正投影圖形的面積,則(  ) A.S1=S2=S3   B.S2=S1且S2≠S3 C.S3=S1且S3≠S2 D.S3=S2且S3≠S1 [答案] D

2、 [解析] D-ABC在xOy平面上的投影為△ABC, 故S1=ABBC=2, 設(shè)D在yOz和zOx平面上的投影分別為D2和D3,則D-ABC在yOz和zOx平面上的投影分別為△OCD2和△OAD3,∵D2(0,1,),D3(1,0,). 故S2=2=,S3=2=, 綜上,選項D正確. 2.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E是AA1的中點,則異面直線D1C與BE所成角的余弦值為(  ) A.          B. C. D. [答案] B [解析] 以A為原點,AB、AD、AA1所在直線為x軸、y軸、z軸建立空間直角坐標系,設(shè)AB=1,則

3、B(1,0,0),D(0,1,0),C(1,1,0),D1(0,1,2),∵AA1=2AB,∴E(0,0,1), ∴=(-1,0,1),=(-1,0,2), ∴cos〈,〉===, 故選B. 3.(20xx浙江理,8)如圖,已知△ABC,D是AB的中點,沿直線CD將△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角為α,則(  ) A.∠A′DB≤α B.∠A′DB≥α C.∠A′CB≤α D.∠A′CB≥α [答案] B [解析] ∵A′C和BC都不與CD垂直,∴∠A′CB≠α,故C,D錯誤.當CA=CB時,容易證明∠A′DB=α.不妨取一個特殊的三角形,如R

4、t△ABC,令斜邊AB=4,AC=2,BC=2,如圖所示,則CD=AD=BD=2,∠BDH=120,設(shè)沿直線CD將△ACD折成△A′CD,使平面A′CD⊥平面BCD,則α=90.取CD中點H,連接A′H,BH,則A′H⊥CD,∴A′H⊥平面BCD,且A′H=,DH=1.在△BDH中,由余弦定理可得BH=.在Rt△A′HB中,由勾股定理可得A′B=.在△A′DB中,∵A′D2+BD2-A′B2=-2<0,可知cos∠A′DB<0,∴A′DB為鈍角,故排除A.綜上可知答案為B. 4.已知三棱柱ABC-A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AB1與底面AB

5、C所成角的正弦值等于(  ) A. B. C. D. [答案] B [解析] 如圖,設(shè)A1在平面ABC內(nèi)的射影為O,以O(shè)為坐標原點,OA、OA1分別為x軸、z軸建立空間直角坐標系如圖.設(shè)△ABC邊長為1,則 A(,0,0),B1(-,,), ∴=(-,,). 平面ABC的法向量n=(0,0,1),則AB1與底面ABC所成角α的正弦值為 sinα=|cos〈,n〉|==. 5.過正方形ABCD的頂點A,引PA⊥平面ABCD.若PA=BA,則平面ABP和平面CDP所成的二面角的大小是(  ) A.30 B.45 C.60 D.90 [答案] B [解析] 建立

6、如圖所示的空間直角坐標系,不難求出平面APB與平面PCD的法向量分別為n1=(0,1,0),n2=(0,1,1),故平面ABP與平面CDP所成二面角(銳角)的余弦值為=, 故所求的二面角的大小是45. 6.如圖,四棱錐S-ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中不正確的是(  ) A.AC⊥SB B.AB∥平面SCD C.SA與平面SBD所成的角等于SC與平面SBD所成的角 D.AB與SC所成的角等于DC與SA所成的角 [答案] D [解析] ∵四邊形ABCD是正方形,∴AC⊥BD. 又∵SD⊥底面ABCD,∴SD⊥AC. ∵SD∩BD=D,∴AC⊥平面

7、SDB,從而AC⊥SB.故A正確.易知B正確.設(shè)AC與DB交于O點,連接SO.則SA與平面SBD所成的角為∠ASO,SC與平面SBD所成的角為∠CSO,又OA=OC,SA=SC,∴∠ASO=∠CSO.故C正確.由排除法可知選D. 二、填空題 7.如圖,在空間直角坐標系中有棱長為a的正方體ABCD-A1B1C1D1,點M是線段DC1上的動點,則點M到直線AD1距離的最小值是________. [答案] a [解析] 設(shè)M(0,m,m)(0≤m≤a),=(-a,0,a),直線AD1的一個單位方向向量s=(-,0,),=(0,-m,a-m),故點M到直線AD1的距離 d= ==,

8、根式內(nèi)的二次函數(shù)當m=-=時取最小值()2-a+a2=a2,故d的最小值為a. 8.(20xx四川理,14)如圖,四邊形ABCD和ADPQ均為正方形,它們所在的平面互相垂直,動點M在線段PQ上,E,F(xiàn)分別為AB,BC的中點.設(shè)異面直線EM與AF所成的角為θ,則cos θ的最大值為________. [答案]  [解析] 分別以直線AB、AD、AQ為x軸、y軸、z軸建立空間直角坐標系如圖所示. 設(shè)AB=1,則=, E. 設(shè)M(0,y,1)(0≤y≤1),則 =, 由于異面直線所成角的范圍為, 所以cos θ==. 因為2=1-,令8y+1=t,1≤t≤9,則=≥,當t=1

9、時取等號. 所以≤= 所以cos θ=≤=,當y=0時,取得最大值. 三、解答題 9.在直三棱柱ABC-A1B1C1中,∠ABC=90,BC=2,CC1=4,點E在線段BB1上,且EB1=1,D、F、G分別為CC1、C1B1、C1A1的中點. 求證:(1)B1D⊥平面ABD; (2)平面EGF∥平面ABD. [證明] (1)以B為坐標原點,BA、BC、BB1所在的直線分別為x軸、y軸、z軸建立空間直角坐標系,如圖所示. 則B(0,0,0),D(0,2,2),B1(0,0,4), 設(shè)BA=a,則A(a,0,0), 所以=(a,0,0),=(0,2,2), =(0,2,-2)

10、,=0, =0+4-4=0, 即B1D⊥BA,B1D⊥BD, 又BA∩BD=B,因此B1D⊥平面ABD. (2)由(1)知,E(0,0,3),G(,1,4),F(xiàn)(0,1,4), 則=(,1,1),=(0,1,1), =0+2-2=0,=0+2-2=0, 即B1D⊥EG,B1D⊥EF, 又EG∩EF=E,因此B1D⊥平面EGF. 結(jié)合(1)可知平面EGF∥平面ABD. [方法點撥] 1.空間的平行與垂直關(guān)系的判斷與證明,既可用綜合幾何方法解決,也可用向量幾何方法解決. 2.用向量方法研究空間線面位置關(guān)系. 設(shè)直線l1、l2的方向向量分別為a、b,平面α、β的法向量分別為e

11、1,e2,A、B、C分別為平面α內(nèi)相異三點(其中l(wèi)1與l2不重合,α與β不重合),則 ①l1∥l2?a∥b?存在實數(shù)λ,使b=λa(a≠0);l1⊥l2?a⊥b?ab=0. ②l1⊥α?a∥e1?存在實數(shù)λ,使e1=λa(a≠0);l1∥α?ae1=0?存在非零實數(shù)λ1,λ2,使a=λ1+λ2. ③α∥β?e1∥e2?存在實數(shù)λ,使e2=λe1(e1≠0);α⊥β?e1⊥e2?e1e2=0. 3.平面的法向量求法 在平面內(nèi)任取兩不共線向量a,b,設(shè)平面的法向量n=(x,y,z),利用建立x、y、z的方程組,取其一組解. 10.如圖,已知ABCD-A1B1C1D1是底面為正方形的長方

12、體,A1D1=2,A1A=2,點P是AD1上的動點. (1)當P為AD1的中點時,求異面直線AA1與B1P所成角的余弦值; (2)求PB1與平面AA1D1所成角的正切值的最大值. [解析] (1)(解法一)過點P作PE⊥A1D1,垂足為E,連接B1E,則PE∥AA1, ∴∠B1PE是異面直線AA1與B1P所成的角. 在Rt△AA1D1中, A1D1=2,AA1=2, ∴A1E=A1D1=1, ∴B1E==. 又PE=AA1=, ∴在Rt△B1PE中,B1P==2, cos∠B1PE===. ∴異面直線AA1與B1P所成角的余弦值為. (解法二)以A1為原點,A1B

13、1所在的直線為x軸,A1D1所在直線為y軸,A1A所在直線為z軸建立空間直角坐標系如圖所示,則A1(0,0,0),A(0,0,2),B1(2,0,0),P(0,1,), ∴=(0,0,2), =(-2,1,), ∴cos〈,〉===. ∴異面直線AA1與B1P所成角的余弦值為. (2)由(1)知,B1A1⊥平面AA1D1, ∴∠B1PA1是PB1與平面AA1D1所成的角, 且tan∠B1PA1==. 當A1P最小時,tan∠B1PA1最大,這時A1P⊥AD1,由A1P==,得tan∠B1PA1=, 即PB1與平面AA1D1所成角的正切值的最大值為. 11.(20xx天津理,

14、17)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點. (1)證明:BE⊥DC; (2)求直線BE與平面PBD所成角的正弦值; (3)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值. [解析] 解法一:由題意易知AP、AB、AD兩兩垂直,以點A為原點建立空間直角坐標系(如圖),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),由E為棱PC的中點, 得E(1,1,1). (1)證明:=(0,1,1),=(2,0,0),故=0,所以BE⊥DC. (2)=(-

15、1,2,0),=(1,0,-2),設(shè)n=(x,y,z)為平面PBD的法向量,則 即 不妨令y=1,可得n=(2,1,1)為平面PBD的一個法向量,于是有 cos〈n,〉===. 所以,直線BE與平面PBD所成角的正弦值為. (3)向量=(1,2,0),=(-2,-2,2),=(2,2,0),=(1,0,0),由點F在棱PC上,設(shè)=λ,0≤λ≤1. 故=+=+λ=(1-2λ,2-2λ,2λ),由BF⊥AC,得=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=,即=(-,,). 設(shè)n1=(x,y,z)為平面FAB的法向量,則 即 不妨令z=1,可得n1=(0,-3,1)為平

16、面FAB的一個法向量,取平面ABP的法向量n2=(0,1,0),則 cos〈n1,n2〉===-. 易知,二面角F-AB-P是銳角, 所以其余弦值為. 解法二:(1)證明:如圖,取PD中點M,連接EM、AM. 由于E、M分別為PC、PD的中點,故EM∥DC,且EM=DC,又由已知,可得EM∥AB且EM=AB,故四邊形ABEM為平行四邊形,所以BE∥AM. 因為PA⊥底面ABCD,故PA⊥CD,而CD⊥DA,從而CD⊥平面PAD,因為AM?平面PAD,于是CD⊥AM,又BE∥AM,所以BE⊥CD. (2)連接BM,由(1)有CD⊥平面PAD,得CD⊥PD,而EM∥CD,故PD⊥

17、EM,又因為AD=AP,M為PD的中點,故PD⊥AM,可得PD⊥BE,所以PD⊥平面BEM,故平面BEM⊥平面PBD,所以,直線BE在平面PBD內(nèi)的射影為直線BM,而BE⊥EM,可得∠EBM為銳角,故∠EBM為直線BE與平面PBD所成的角. 依題意,有PD=2,而M為PD中點,可得AM=,進而BE=,故在直角三角形BEM中,tan∠EBM===,因此sin∠EBM=. 所以,直線BE與平面PBD所成角的正弦值為. (3)如圖,在△PAC中,過點F作FH∥PA交AC于點H,因為PA⊥底面ABCD,故FH⊥底面ABCD,從而FH⊥AC, 又BF⊥AC,得AC⊥平面FHB,因此AC⊥BH

18、,在底面ABCD內(nèi),可得CH=3HA,從而CF=3FP. 在平面PDC內(nèi),作FG∥DC交PD于點G,于是DG=3GP,由于DC∥AB,故GF∥AB,所以A,B,F(xiàn),G四點共面,由AB⊥PA,AB⊥AD,得AB⊥平面PAD,故AB⊥AG,所以∠PAG為二面角F-AB-P的平面角. 在△PAG中,PA=2,PG=PD=,∠APG=45,由余弦定理可得AG=,cos∠PAG=. 所以,二面角F-AB-P的余弦值為. [方法點撥] 1.運用空間向量坐標運算求空間角的一般步驟 ①建立恰當?shù)目臻g直角坐標系;②求出相關(guān)點的坐標;③寫出向量坐標;④結(jié)合公式進行論證、計算;⑤轉(zhuǎn)化為幾何結(jié)論. 2.兩

19、異面直線所成的角不一定是直線的方向向量的夾角;兩平面的法向量的夾角與二面角相等或互補;直線的方向向量與平面的法向量的夾角與線面角的余角相等或互補. 12.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45. (1)求證:平面PAB⊥平面PAD; (2)設(shè)AB=AP. (ⅰ)若直線PB與平面PCD所成的角為30,求線段AB的長; (ⅱ)在線段AD上是否存在一個點G,使得點G到點P、B、C、D的距離都相等?說明理由. [解析] (1)因為PA⊥平面ABCD,AB?平面ABCD, 所以PA⊥AB. 又AB⊥AD,P

20、A∩AD=A,所以AB⊥平面PAD. 又AB?平面PAB,所以平面PAB⊥平面PAD. (2)以A為坐標原點,建立空間直角坐標系A(chǔ)-xyz如圖. 在平面ABCD內(nèi),作CE∥AB交AD于點E,則CE⊥AD. 在Rt△CDE中,DE=CDcos45=1, CE=CDsin45=1. 設(shè)AB=AP=t,則B(t,0,0),P(0,0,t). 由AB+AD=4得AD=4-t, 所以E(0,3-t,0),C(1,3-t,0),D(0,4-t,0), =(-1,1,0),=(0,4-t,-t). (ⅰ)設(shè)平面PCD的法向量為n=(x,y,z), 由n⊥,n⊥,得 取x=t,得平

21、面PCD的一個法向量n=(t,t,4-t). 又=(t,0,-t),故由直線PB與平面PCD所成的角為30得cos60=, 即=, 解得t=或t=4(舍去,因為AD=4-t>0), 所以AB=. (ⅱ)假設(shè)在線段AD上存在一個點G,使得點G到點P,B,C,D的距離都相等. 設(shè)G(0,m,0)(其中0≤m≤4-t), 則=(1,3-t-m,0),=(0,4-t-m,0),=(0,-m,t). 由||=||得12+(3-t-m)2=(4-t-m)2, 即t=3-m;?、? 由||=||得(4-t-m)2=m2+t2.?、? 由①、②消去t,化簡得m2-3m+4=0.?、? 由

22、于方程③沒有實數(shù)根,所以在線段AD上不存在一個點G,使得點G到點P、C、D的距離都相等. 從而,在線段AD上不存在一個點G,使得點G到點P,B,C,D的距離都相等. [方法點撥] 1.用空間向量求點到平面的距離的方法步驟是:(1)求出平面的法向量n;(2)任取一條過該點的該平面的一條斜線段,求出其向量坐標n1;(3)求點到平面的距離d=. 2.點面距、線面距、異面直線間的距離的求法共同點是:設(shè)平面的法向量為n(求異面直線間的距離時,取與兩異面直線都垂直的向量為n),求距離的兩幾何圖形上各取一點A、B,則距離d=. 13.(20xx湖南理,19)如圖,已知四棱臺ABCD-A1B1C1D1

23、的上、下底面分別是邊長為3和6的正方形,A1A=6,且A1A⊥底面ABCD.點P,Q分別在棱DD1,BC上. (1)若P是DD1的中點,證明:AB1⊥PQ; (2)若PQ∥平面ABB1A1,二面角P-QD-A的余弦值為,求四面體ADPQ的體積. [分析] 考查空間向量的運用,線面垂直的性質(zhì)與空間幾何體體積計算.考查轉(zhuǎn)化思想、方程思想、運算求解能力和空間想像能力. (1)建立空間直角坐標系,求得相關(guān)點的坐標將問題轉(zhuǎn)化為證明AB1―→PQ―→=0;(2)利用向量幾何求解:將PQ∥平面ABB1A1轉(zhuǎn)化為與平面ABB1A1的法向量垂直,結(jié)合平面的法向量與二面角的關(guān)系確定點P,最后利用體積公

24、式計算體積.或用綜合幾何方法求解. [解析] 解法一 由題設(shè)知,AA1,AB,AD兩兩垂直,以A為坐標原點,AB,AD,AA1所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標系,則相關(guān)各點的坐標為A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中m=BQ,0≤m≤6. (1)證明:若P是DD1的中點,則P(0,,3),=(6,m-,-3),=(3,0,6),于是=18-18=0,所以⊥,即AB1⊥PQ; (2)由題設(shè)知,=(6,m-6,0),=(0,-3,6)是平面PQD內(nèi)的兩個不共線向量. 設(shè)n1=(x,y,z)是平面PQ

25、D的一個法向量, 則 ,即 取y=6,得n1=(6-m,6,3). 又平面AQD的一個法向量是n2=(0,0,1), 所以cos〈n1,n2〉===,而二面角P-QD-A的余弦值為,因此=,解得m=4,或者m=8(舍去),此時Q(6,4,0). 設(shè)=λ (0<λ<1),而=(0,-3,6), 由此得點P(0,6-3λ,6λ),=(6,3λ-2,-6λ). 因為PQ∥平面ABB1A1,且平面ABB1A1的一個法向量是n3=(0,1,0),所以n3=0,即3λ-2=0,亦即λ=,從而P(0,4,4),于是,將四面體ADPQ視為以△ADQ為底面的三棱錐P-ADQ,而其高h=4,故四面體

26、ADPQ的體積V=S△ADQh=664=24. 解法二 (1)如圖c,取A1A的中點R,連接PR,BR,因為A1A,D1D是梯形A1AD1D的兩腰,P是D1D的中點,所以PR∥AD,于是由AD∥BC知,PR∥BC,所以P,R,B,C四點共面. 由題設(shè)知,BC⊥AB,BC⊥A1A,所以BC⊥平面ABB1A1,因此BC⊥AB1①, 因為tan∠ABR== ==tan∠A1AB1, 所以tan∠ABR=tan∠A1AB1,因此∠ABR+∠BAB1=∠A1AB1+∠BAB1=90,于是AB1⊥BR,再由①即知平面AB1⊥平面PRBC,又PQ?平面PRBC,故AB1⊥PQ. 圖c 圖

27、d (2)如圖d,過點P作PM//A1A交AD于點M,則PM//平面ABB1A1. 因為A1A⊥平面ABCD,所以PM⊥平面ABCD,過點M作MN⊥QD于點N,連接PN,則PN⊥QD,∠PNM為二面角P-QD-A的平面角,所以cos∠PNM=,即=,從而=.③ 連接MQ,由PQ//平面ABB1A1,所以MQ//AB,又ABCD是正方形,所以ABQM為矩形,故MQ=AB=6.設(shè)MD=t,則MN== ④過點D1作D1E∥A1A交AD于點E,則AA1D1E為矩形,所以D1E=A1A=6,AE=A1D1=3,因此ED=AD-AE=3,于是===2,所以PM=2MD=2t,再由③④得=,解得t=2,因此PM=4.故四面體ADPQ的體積V=S△ADQh=664=24.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!