高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練18 Word版含答案

上傳人:仙*** 文檔編號:41994468 上傳時間:2021-11-24 格式:DOC 頁數(shù):13 大小:6.15MB
收藏 版權(quán)申訴 舉報 下載
高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練18 Word版含答案_第1頁
第1頁 / 共13頁
高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練18 Word版含答案_第2頁
第2頁 / 共13頁
高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練18 Word版含答案_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練18 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高三理科數(shù)學(xué)新課標(biāo)二輪復(fù)習(xí)專題整合高頻突破習(xí)題:專題六 直線、圓、圓錐曲線 專題能力訓(xùn)練18 Word版含答案(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題能力訓(xùn)練18直線與圓錐曲線能力突破訓(xùn)練1.已知O為坐標(biāo)原點,F是橢圓C:x2a2+y2b2=1(a>b>0)的左焦點,A,B分別為C的左、右頂點.P為C上一點,且PFx軸.過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為()A.13B.12C.23D.342.(2017江西贛州二模)已知雙曲線x2a2-y2b2=1(a,b>0)的離心率為5,則拋物線x2=4y的焦點到雙曲線的漸近線的距離是()A.510B.55C.255D.4553.如果與拋物線y2=8x相切傾斜角為135°的直線l與x軸和y軸的交點分別是A和B,那么過

2、A,B兩點的最小圓截拋物線y2=8x的準(zhǔn)線所得的弦長為()A.4B.22C.2D.24.(2017河南六市第二次聯(lián)考)已知雙曲線1:x2a2-y2b2=1(a>0,b>0)的左、右焦點分別為F1,F2,橢圓2:x28+y26=1的離心率為e,直線MN過F2與雙曲線交于M,N兩點,若cosF1MN=cosF1F2M,|F1M|F1N|=e,則雙曲線1的兩條漸近線的傾斜角分別為()A.30°和150°B.45°和135°C.60°和120°D.15°和165°5.平面直角坐標(biāo)系xOy中,雙曲線C1:x2a2

3、-y2b2=1(a>0,b>0)的漸近線與拋物線C2:x2=2py(p>0)交于點O,A,B.若OAB的垂心為C2的焦點,則C1的離心率為. 6.已知橢圓C:x2a2+y2b2=1(a>b>0)的右焦點F(1,0),過點F且與坐標(biāo)軸不垂直的直線與橢圓交于P,Q兩點,當(dāng)直線PQ經(jīng)過橢圓的一個頂點時其傾斜角恰好為60°.(1)求橢圓C的方程.(2)設(shè)O為坐標(biāo)原點,線段OF上是否存在點T(t,0),使得QP·TP=PQ·TQ?若存在,求出實數(shù)t的取值范圍;若不存在,說明理由.7.(2017浙江,21)如圖,已知拋物線x2=y,點A

4、-12,14,B32,94,拋物線上的點P(x,y)-12<x<32.過點B作直線AP的垂線,垂足為Q.(1)求直線AP斜率的取值范圍;(2)求|PA|·|PQ|的最大值.8.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,A(a,0),B(0,b),O(0,0),OAB的面積為1.(1)求橢圓C的方程;(2)設(shè)P是橢圓C上一點,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:|AN|·|BM|為定值.9.已知橢圓C:x22+y2=1與直線l:y=kx+m相交于E,F兩點,且直線l與圓O:x2+y2=23相切于點W(O為坐標(biāo)原點

5、).(1)證明:OEOF;(2)設(shè)=|EW|FW|,求實數(shù)的取值范圍.思維提升訓(xùn)練10.定長為3的線段AB的兩個端點A,B分別在x軸、y軸上滑動,動點P滿足BP=2PA.(1)求點P的軌跡曲線C的方程;(2)若過點(1,0)的直線與曲線C交于M,N兩點,求OM·ON的最大值.11.設(shè)圓x2+y2+2x-15=0的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E.(1)證明|EA|+|EB|為定值,并寫出點E的軌跡方程;(2)設(shè)點E的軌跡為曲線C1,直線l交C1于M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面

6、積的取值范圍.12.已知橢圓E:x2a2+y2b2=1(a>b>0)過點(0,2),且離心率e=22.(1)求橢圓E的方程;(2)設(shè)直線l:x=my-1(mR)交橢圓E于A,B兩點,判斷點G-94,0與以線段AB為直徑的圓的位置關(guān)系,并說明理由.參考答案專題能力訓(xùn)練18直線與圓錐曲線能力突破訓(xùn)練1.A解析由題意,不妨設(shè)直線l的方程為y=k(x+a),k>0,分別令x=-c與x=0,得|FM|=k(a-c),|OE|=ka.設(shè)OE的中點為G,由OBGFBM,得12|OE|FM|=|OB|BF|,即ka2k(a-c)=aa+c,整理,得ca=13,故橢圓的離心率e=13,故選A.

7、2.B解析拋物線x2=4y的焦點為(0,1),雙曲線x2a2-y2b2=1(a,b>0)的離心率為5,所以ba=c2-a2a2=e2-1=2,雙曲線的漸近線為y=±bax=±2x,則拋物線x2=4y的焦點到雙曲線的漸近線的距離是11+4=55.故選B.3.C解析設(shè)直線l的方程為y=-x+b,聯(lián)立直線與拋物線方程,消元得y2+8y-8b=0.因為直線與拋物線相切,所以=82-4×(-8b)=0,解得b=-2,故直線l的方程為x+y+2=0,從而A(-2,0),B(0,-2).因此過A,B兩點的最小圓即為以AB為直徑的圓,其方程為(x+1)2+(y+1)2=2,

8、而拋物線y2=8x的準(zhǔn)線方程為x=-2,此時圓心(-1,-1)到準(zhǔn)線的距離為1,故所截弦長為2(2)2-12=2.4.C解析由題意可知|F1M|F1N|=e=12,2|F1M|=|F1N|.由cosF1MN=cosF1F2M,可得F1MN=F1F2M,即|F1M|=|F1F2|=2c,|F1N|=4c,由雙曲線的定義可得|MF2|=2c-2a,|NF2|=4c-2a.取MF2的中點K,連接KF1,則|KM|=|KF2|=c-a.由勾股定理可得|F1K|2+|NK|2=|NF1|2,即4c2-(c-a)2+(5c-3a)2=16c2,整理可得(c-2a)(3c-a)=0,由雙曲線的性質(zhì)可得e=c

9、a=2,則雙曲線1的兩條漸近線的傾斜角分別為60°和120°.故選C.5.32解析雙曲線的漸近線為y=±bax.由y=bax,x2=2py,得A2bpa,2b2pa2.由y=-bax,x2=2py,得B-2bpa,2b2pa2.F0,p2為OAB的垂心,kAF·kOB=-1.即2b2pa2-p22bpa-0·-ba=-1,解得b2a2=54,c2a2=94,即可得e=32.6.解(1)由題意知c=1,又bc=tan60°=3,所以b2=3,a2=b2+c2=4,所以橢圓的方程為x24+y23=1.(2)設(shè)直線PQ的方程為y=k(x-1

10、)(k0),代入x24+y23=1,得(3+4k2)x2-8k2x+4k2-12=0,設(shè)P(x1,y1),Q(x2,y2),線段PQ的中點為R(x0,y0),則x0=x1+x22=4k23+4k2,y0=k(x0-1)=-3k3+4k2.由QP·TP=PQ·TQ,得PQ·(TQ+TP)=PQ·(2TR)=0,所以直線TR為直線PQ的垂直平分線,直線TR的方程為y+3k3+4k2=-1kx-4k23+4k2.令y=0得點T的橫坐標(biāo)t=k23+4k2=13k2+4.因為k2(0,+),所以3k2+4(4,+),所以t0,14.所以線段OF上存在點T(t,0)

11、,使得QP·TP=PQ·TQ,其中t0,14.7.解(1)設(shè)直線AP的斜率為k,k=x2-14x+12=x-12,因為-12<x<32,所以直線AP斜率的取值范圍是(-1,1).(2)聯(lián)立直線AP與BQ的方程kx-y+12k+14=0,x+ky-94k-32=0,解得點Q的橫坐標(biāo)是xQ=-k2+4k+32(k2+1).因為|PA|=1+k2x+12=1+k2(k+1),|PQ|=1+k2(xQ-x)=-(k-1)(k+1)2k2+1,所以|PA|·|PQ|=-(k-1)(k+1)3.令f(k)=-(k-1)(k+1)3,因為f'(k)=-(4k

12、-2)(k+1)2,所以f(k)在區(qū)間-1,12上單調(diào)遞增,12,1上單調(diào)遞減,因此當(dāng)k=12時,|PA|·|PQ|取得最大值2716.8.解(1)由題意得ca=32,12ab=1,a2=b2+c2,解得a=2,b=1.所以橢圓C的方程為x24+y2=1.(2)由(1)知,A(2,0),B(0,1).設(shè)P(x0,y0),則x02+4y02=4.當(dāng)x00時,直線PA的方程為y=y0x0-2(x-2).令x=0,得yM=-2y0x0-2,從而|BM|=|1-yM|=1+2y0x0-2.直線PB的方程為y=y0-1x0x+1.令y=0,得xN=-x0y0-1,從而|AN|=|2-xN|=2

13、+x0y0-1.所以|AN|·|BM|=2+x0y0-1·1+2y0x0-2=x02+4y02+4x0y0-4x0-8y0+4x0y0-x0-2y0+2=4x0y0-4x0-8y0+8x0y0-x0-2y0+2=4.當(dāng)x0=0時,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.綜上,|AN|·|BM|為定值.9.解(1)因為直線l與圓O相切,所以圓x2+y2=23的圓心到直線l的距離d=|m|1+k2=23,從而m2=23(1+k2).由x22+y2=1,y=kx+m,整理,得(1+2k2)x2+4kmx+2m2-2=0.設(shè)E(x1,

14、y1),F(x2,y2),則x1+x2=-4km1+2k2,x1x2=2m2-21+2k2,所以O(shè)E·OF=x1x2+y1y2=x1x2+(kx1+m)·(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)2m2-21+2k2+-4k2m21+2k2+m2=3m2-2k2-21+2k2=2(1+k2)-2k2-21+2k2=0.所以O(shè)EOF.(2)因為直線l與圓O相切于W,x122+y12=1,x222+y22=1,所以=|EW|FW|=|OE|2-r2|OF|2-r2=x12+y12-23x22+y22-23=x122+13x222+13.由(1)

15、知x1x2+y1y2=0,所以x1x2=-y1y2,即x12x22=y12y22,從而x12x22=1-x1221-x222,即x22=4-2x122+3x12,所以=x122+13x222+13=2+3x124.因為-2x12,所以12,2.思維提升訓(xùn)練10.解(1)設(shè)A(x0,0),B(0,y0),P(x,y),由BP=2PA得(x,y-y0)=2(x0-x,-y),即x=2(x0-x),y-y0=-2yx0=32x,y0=3y.因為x02+y02=9,所以32x2+(3y)2=9,化簡,得x24+y2=1,所以點P的軌跡方程為x24+y2=1.(2)當(dāng)過點(1,0)的直線為y=0時,OM

16、·ON=(2,0)·(-2,0)=-4,當(dāng)過點(1,0)的直線不為y=0時,可設(shè)為x=ty+1,A(x1,y1),B(x2,y2).聯(lián)立x24+y2=1,x=ty+1并化簡,得(t2+4)y2+2ty-3=0,由根與系數(shù)的關(guān)系得y1+y2=-2tt2+4,y1y2=-3t2+4,OM·ON=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2=(t2+1)y1y2+t(y1+y2)+1=(t2+1)-3t2+4+t·-2tt2+4+1=-4t2+1t2+4=-4(t2+4)+17t2+4=-4+17t2+4.又由=4t2+12(t2+4)=16t2

17、+48>0恒成立,所以tR,對于上式,當(dāng)t=0時,(OM·ON)max=14.綜上所述,OM·ON的最大值為14.11.解(1)因為|AD|=|AC|,EBAC,故EBD=ACD=ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圓A的標(biāo)準(zhǔn)方程為(x+1)2+y2=16,從而|AD|=4,所以|EA|+|EB|=4.由題設(shè)得A(-1,0),B(1,0),|AB|=2,由橢圓定義可得點E的軌跡方程為x24+y23=1(y0).(2)當(dāng)l與x軸不垂直時,設(shè)l的方程為y=k(x-1)(k0),M(x1,y1),N(x2,y2),由y=k(

18、x-1),x24+y23=1得(4k2+3)x2-8k2x+4k2-12=0,則x1+x2=8k24k2+3,x1x2=4k2-124k2+3,所以|MN|=1+k2|x1-x2|=12(k2+1)4k2+3.過點B(1,0)且與l垂直的直線m:y=-1k(x-1),A到m的距離為2k2+1,所以|PQ|=242-2k2+12=44k2+3k2+1.故四邊形MPNQ的面積S=12|MN|PQ|=121+14k2+3.可得當(dāng)l與x軸不垂直時,四邊形MPNQ面積的取值范圍為(12,83).當(dāng)l與x軸垂直時,其方程為x=1,|MN|=3,|PQ|=8,四邊形MPNQ的面積為12.綜上,四邊形MPNQ

19、面積的取值范圍為12,83).12.解(1)由已知,得b=2,ca=22,a2=b2+c2,解得a=2,b=2,c=2.所以橢圓E的方程為x24+y22=1.(2)方法一:設(shè)點A(x1,y1),B(x2,y2),AB的中點為H(x0,y0).由x=my-1,x24+y22=1得(m2+2)y2-2my-3=0,所以y1+y2=2mm2+2,y1y2=-3m2+2,從而y0=mm2+2.所以|GH|2=x0+942+y02=my0+542+y02=(m2+1)y02+52my0+2516.|AB|24=(x1-x2)2+(y1-y2)24=(1+m2)(y1-y2)24=(1+m2)(y1+y2

20、)2-4y1y24=(1+m2)(y02-y1y2),故|GH|2-|AB|24=52my0+(1+m2)y1y2+2516=5m22(m2+2)-3(1+m2)m2+2+2516=17m2+216(m2+2)>0,所以|GH|>|AB|2.故點G-94,0在以AB為直徑的圓外.方法二:設(shè)點A(x1,y1),B(x2,y2),則GA=x1+94,y1,GB=x2+94,y2.由x=my-1,x24+y22=1得(m2+2)y2-2my-3=0,所以y1+y2=2mm2+2,y1y2=-3m2+2,從而GA·GB=x1+94x2+94+y1y2=my1+54my2+54+y1y2=(m2+1)y1y2+54m(y1+y2)+2516=-3(m2+1)m2+2+52m2m2+2+2516=17m2+216(m2+2)>0,所以cos<GA,GB>>0.又GA,GB不共線,所以AGB為銳角.故點G-94,0在以AB為直徑的圓外.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!