《高考數學 文復習檢測:第五章 數列 課時作業(yè)31 Word版含答案》由會員分享,可在線閱讀,更多相關《高考數學 文復習檢測:第五章 數列 課時作業(yè)31 Word版含答案(6頁珍藏版)》請在裝配圖網上搜索。
1、 課時作業(yè)31數列的概念與簡單表示法一、選擇題1數列,的第10項是()A BC D解析:所給數列呈現分數形式,且正負相間,求通項公式時,我們可以把每一部分進行分解:符號、分母、分子很容易歸納出數列an的通項公式an(1)n1,故a10.答案:C2若數列an的通項公式是an(1)n(3n2),則a1a2a10等于()A15 B12C12 D15解析:由題意知,a1a2a1014710(1)10(3102)(14)(710)(1)9(392)(1)10(3102)3515.答案:A3若Sn為數列an的前n項和,且Sn,則等于()A. B.C. D30解析:當n2時,anSnSn1,所以5630.答
2、案:D4已知數列an的通項公式為ann22n(nN*),則“0,即2n12對任意的nN*都成立,于是有32,.由1可推得,但反過來,由不能得到1,因此“1”是“數列an為遞增數列”的充分不必要條件,故選A.答案:A5(20xx衡水中學一調)已知前n項和為Sn的正項數列an滿足lgan1(lganlgan2),且a34,S23,則()A2Snan1 BSn2an1C2Snan1 DSn2an1解析:依題意,aanan2,故數列an為等比數列由a34,S23,解得a11,q2,故an2n1.Sn2n12an1,故選D.答案:D6(20xx鄭州一中一聯(lián))在數列an中,若對任意的nN*均有anan1a
3、n2為定值,且a72,a93,a984,則數列an的前100項的和S100()A132 B299C68 D99解析:因為在數列an中,若對任意的nN*均有anan1an2為定值,所以對任意的nN*均有anan1an2an1an2an3,即an3an,所以數列an是以3為周期的周期數列又因為a72,a93,a984,所以a1a2a32349,所以S10033(a1a2a3)a1003392299.答案:B二、填空題7數列an中,已知a11,a22,an1anan2(nN*),則a7_.解析:由已知an1anan2,a11,a22.能夠計算出a31,a41,a52,a61,a71.答案:18已知數
4、列an的前n項和為Sn,Sn2ann,則an_.解析:當n1時,S1a12a11,得a11,當n2時,anSnSn12ann2an1(n1),即an2an11,an12(an11),數列an1是首項為a112,公比為2的等比數列,an122n12n,an2n1.答案:2n19若數列an滿足a11,n(an1an)2an1(nN*),則數列an的通項公式是an_.解析:n(an1an)2an1,(n1)an1nan2,數列nan是首項為1,公差為2的等差數列,nan2n3,an2.答案:2三、解答題10已知數列an中,a11,前n項和Snan.(1)求a2,a3.(2)求an的通項公式解:(1)
5、由S2a2得3(a1a2)4a2,解得a23a13.由S3a3得3(a1a2a3)5a3,解得a3(a1a2)6.(2)由題設知a11.當n2時,有anSnSn1anan1,整理得anan1.于是a11,a2a1,a3a2,an1an2,anan1.將以上n個等式兩端分別相乘,整理得an.顯然,當n1時也滿足上式綜上可知,an的通項公式an.11(20xx安徽合肥質檢)在數列an中,a1,an1an,nN*.(1)求證:數列為等比數列;(2)求數列an的前n項和Sn.解:(1)證明:由an1an知.所以是以為首項,為公比的等比數列(2)由(1)知是首項為,公比為的等比數列,所以n,所以an.所
6、以Sn則Sn,得Sn1,所以Sn2.1(20xx重慶高考適應性測試)在數列an中,若a12,且對任意正整數m,k,總有amkamak,則an的前n項和Sn()An(3n1) B.Cn(n1) D.解析:依題意得an1ana1,即有an1ana12,所以數列an是以2為首項,2為公差的等差數列,an22(n1)2n,Snn(n1),選C.答案:C2(20xx江西師大附中、鷹潭一中聯(lián)考)定義:在數列an中,若滿足d(nN*,d為常數),稱an為“等差比數列”已知在“等差比數列”an中,a1a21,a33,則()A42 01521 B42 01421C42 01321 D42 0132解析:由題知是
7、首項為1,公差為2的等差數列,則2n1,所以an(2n3)(2n5)1.所以4 0274 025(4 0261)(4 0261)4 0262142 01321.答案:C3(20xx貴陽監(jiān)測)已知數列an滿足a12,an1(nN*),則該數列的前2 015項的乘積a1a2a3a2 015_.解析:由題意可得,a23,a3,a4,a52a1,數列an是以4為周期的數列,而2 01545033,a1a2a3a41,前2 015項的乘積為1503a1a2a33.答案:34在數列an中,a11,anan1n(nN*)(1)求證:數列a2n與a2n1(nN*)都是等比數列;(2)若數列an的前2n項和為T2n,令bn(3T2n)n(n1),求數列bn的最大項解:(1)證明:因為anan1n,an1an2n1,所以.又a11,a2,所以數列a1,a3,a2n1,是以1為首項,為公比的等比數列;數列a2,a4,a2n,是以為首項,為公比的等比數列(2)由(1)可得T2n(a1a3a2n1)(a2a4a2n)33n.所以bn3n(n1)n,bn13(n1)(n2)n1,所以bn1bn3(n1)n3(n1)n1(2n),所以b1b4bn,所以(bn)maxb2b3.