精校版高中數(shù)學(xué) 第四章 圓與方程質(zhì)量評估檢測 人教A版必修2

上傳人:仙*** 文檔編號:45107386 上傳時間:2021-12-06 格式:DOC 頁數(shù):6 大?。?65.50KB
收藏 版權(quán)申訴 舉報 下載
精校版高中數(shù)學(xué) 第四章 圓與方程質(zhì)量評估檢測 人教A版必修2_第1頁
第1頁 / 共6頁
精校版高中數(shù)學(xué) 第四章 圓與方程質(zhì)量評估檢測 人教A版必修2_第2頁
第2頁 / 共6頁
精校版高中數(shù)學(xué) 第四章 圓與方程質(zhì)量評估檢測 人教A版必修2_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《精校版高中數(shù)學(xué) 第四章 圓與方程質(zhì)量評估檢測 人教A版必修2》由會員分享,可在線閱讀,更多相關(guān)《精校版高中數(shù)學(xué) 第四章 圓與方程質(zhì)量評估檢測 人教A版必修2(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、最新資料最新資料最新資料最新資料最新資料 高中數(shù)學(xué) 第四章 圓與方程質(zhì)量評估檢測 新人教A版必修2 時間:120分鐘 滿分:150分 一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的. 1.已知空間兩點P1(-1,3,5),P2(2,4,-3),則|P1P2|等于(  ) A.      B.3 C. D. 解析:|P1P2|==. 答案:A 2.直線x+2y-5+=0被圓x2+y2-2x-4y=0截得的弦長為(  ) A.1 B.2 C.4 D.4 解析:由(x-1)2+(y-2)2=

2、5得圓心(1,2),半徑r=,圓心到直線x+2y-5+=0的距離d==1,在半徑、圓心距、半弦長組成的直角三角形中,弦長l=2=2=4. 答案:C 3.已知過點P(2,2)的直線與圓(x-1)2+y2=5相切,且與直線ax-y+1=0垂直,則a=(  ) A.- B.1 C.2 D. 解析:因為點P(2,2)為圓(x-1)2+y2=5上的點,由圓的切線性質(zhì)可知,圓心(1,0)與點P(2,2)的連線與過點P(2,2)的切線垂直.因為圓心(1,0)與點P(2,2)的連線的斜率k=2,故過點P(2,2)的切線斜率為-,所以直線ax-y+1=0的斜率為2,因此a=2. 答案:C

3、4.若直線y=kx+1與圓x2+y2+kx+my-4=0交于M,N兩點,且M,N關(guān)于直線x+2y=0對稱,則實數(shù)k+m=(  ) A.-1 B.1 C.0 D.2 解析:由題意知MN的中垂線為直線x+2y=0,所以k=2,此時圓的方程為x2+y2+2x+my-4=0,所以圓心坐標(biāo)為,代入x+2y=0,得m=-1,所以k+m=1. 答案:B 5.過P(5,4)作圓C:x2+y2-2x-2y-3=0的切線,切點分別為A,B,則四邊形PACB的面積是(  ) A.5 B.10 C.15 D.20 解析:∵圓C的圓心為(1,1),半徑為. ∴|PC|==5, ∴|PA

4、|=|PB|==2, ∴S=22=10. 答案:B 6.設(shè)實數(shù)x,y滿足(x-2)2+y2=3,那么的最大值是(  ) A. B. C. D. 解析:如圖所示,設(shè)過原點的直線方程為y=kx,則與圓有交點的直線中,kmax=,∴的最大值為,故選D. 答案:D 7.垂直于直線y=x+1且與圓x2+y2=1相切于第一象限的直線方程是(  ) A.x+y-=0 B.x+y+1=0 C.x+y-1=0 D.x+y+=0 解析:由題意知直線方程可設(shè)為x+y-c=0(c>0),則圓心到直線的距離等于半徑1,即=1,c=,所求方程為 x+y-=0. 答案:A 8.

5、已知圓C1:(x-2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9,M、N分別是圓C1、C2上的動點,P為x軸上的動點,則|PM|+|PN|的最小值為(  ) A.5-4 B.-1 C.6-2 D. 解析:由題意知,圓C1:(x-2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9的圓心分別為C1(2,3),C2(3,4),且|PM|+|PN|=|PC1|+|PC2|-4,點C1(2,3)關(guān)于x軸的對稱點為C(2,-3),所以|PC1|+|PC2|=|PC|+|PC2|≥|CC2|=5, 即|PM|+|PN|=|PC1|+|PC2|-4≥5-4. 答案

6、:A 9.過點P(-2,4)作圓O:(x-2)2+(y-1)2=25的切線l,直線m:ax-3y=0與直線l平行,則直線l與m的距離為(  ) A.4 B.2 C. D. 解析:∵點P在圓上, ∴切線l的斜率k=-=-=. ∴直線l的方程為y-4=(x+2), 即4x-3y+20=0. 又直線m與l平行, ∴直線m的方程為4x-3y=0. 故兩平行直線的距離為d==4. 答案:A 10.方程=k(x-3)+4有兩個不同的解時,實數(shù)k的取值范圍是(  ) A. B. C. D. 解析:令y=,顯然y2=9-x2(y≥0),表示半圓,直線y=k(x-3)

7、+4過定點(3,4),如圖所示,當(dāng)直線y=k(x-3)+4與半圓y=有兩個交點時,kMD<k≤kMA,因為直線kx-y-3k+4=0,圓心到直線的距離d=,所以由d=3,解得kMD=,又kMA=,所以<k≤,故應(yīng)選D. 答案:D 11.已知集合A={(x,y)|x,y為實數(shù),且x2+y2=1},B={(x,y)|x,y為實數(shù),且x+y=1},則A∩B的元素個數(shù)為(  ) A.4 B.3 C.2 D.1 解析:解法一:(直接法)集合A表示圓,集合B表示一條直線,又圓心(0,0)到直線x+y=1的距離d==<1=r,所以直線與圓相交,故選C. 解法二:(數(shù)形結(jié)合法)畫圖可得,故

8、選C. 答案:C 12.若圓(x-a)2+(y-b)2=b2+1始終平分圓(x+1)2+(y+1)2=4的周長,則a,b滿足的關(guān)系是(  ) A.a(chǎn)2+2a+2b-3=0 B.a(chǎn)2+b2+2a+2b+5=0 C.a(chǎn)2+2a+2b+5=0 D.a(chǎn)2-2a-2b+5=0 解析:即兩圓的公共弦必過(x+1)2+(y+1)2=4的圓心,兩圓相減得相交弦的方程為-2(a+1)x-2(b+1)y+a2+1=0, 將圓心坐標(biāo)(-1,-1)代入可得a2+2a+2b+5=0. 答案:C 二、填空題:本大題共4小題,每小題5分,共20分. 13.若圓C經(jīng)過坐標(biāo)原點和點(4,0),且與直線

9、y=1相切,則圓C的方程是__________. 解析:設(shè)圓的方程為(x-a)2+(y-b)2=r2,因為圓C經(jīng)過點(0,0)和點(4,0),所以a=2,又圓與直線y=1相切,可得1-b=r,故圓的方程為(x-2)2+(y-b)2=(1-b)2,將(0,0)代入解得b=-,r=,所以圓的方程為(x-2)2+2=. 答案:(x-2)2+2= 14.若點P(-4,-2,3)關(guān)于坐標(biāo)平面xOy及y軸的對稱點的坐標(biāo)分別是(a,b,c),(e,f,d),則c+e=__________. 解析:點P關(guān)于坐標(biāo)平面xOy的對稱點坐標(biāo)是(-4,-2,-3),關(guān)于y軸的對稱點坐標(biāo)是(4,-2,-3),從而

10、c+e=1. 答案:1 15.從原點向圓x2+y2-12y+27=0作兩條切線,則該圓夾在兩條切線間的劣弧長為________. 解析:(數(shù)形結(jié)合法)如圖, 圓x2+y2-12y+27=0可化為x2+(y-6)2=9,圓心坐標(biāo)為(0,6),半徑為3. 在Rt△OBC中可得:∠OCB=,∴∠ACB=, ∴所求劣弧長為2π. 答案:2π 16.由動點P向圓x2+y2=1引兩條切線PA,PB,切點分別為A,B,∠APB=60,則動點P的軌跡方程是__________. 解析:設(shè)動點P的坐標(biāo)為(x,y),依題意有|PO|===2, ∴x2+y2=4,即所求的軌跡方程為x2+y2=4

11、. 答案:x2+y2=4 三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟. 17.(本小題滿分10分)求下列各圓的標(biāo)準(zhǔn)方程. (1)圓心在y=0上且過兩點A(1,4),B(3,2); (2)圓心在直線2x+y=0上且與直線x+y-1=0切于點M(2,-1). 解析:(1)設(shè)圓心坐標(biāo)為(a,b),半徑為r, 則所求圓的方程為(x-a)2+(y-b)2=r2. ∵圓心在y=0上,故b=0, ∴圓的方程為(x-a)2+y2=r2. 又∵該圓過A(1,4),B(3,2)兩點, ∴ 解得a=-1,r2=20. ∴所求圓的方程為(x+1)2+y2=2

12、0.(5分) (2)已知圓與直線x+y-1=0相切,并且切點為M(2,-1), 則圓心必在過點M(2,-1)且垂直于x+y-1=0的直線l上, l的方程為y+1=x-2,即y=x-3. 由解得 即圓心為O1(1,-2). r==. ∴所求圓的方程為(x-1)2+(y+2)2=2.(10分) 18.(本小題滿分12分)如圖,已知圓C:x2+y2+10x+10y=0,點A(0,6). (1)求圓心在直線y=x上,經(jīng)過點A,且與圓C相外切的圓N的方程; (2)若過點A的直線m與圓C 交于P,Q兩點,且圓弧PQ恰為圓C周長的,求直線m的方程. 解析:(1)由x2+y2+10x+1

13、0y=0,得(x+5)2+(y+5)2=50. 所以圓C的圓心坐標(biāo)為C(-5,-5). 又圓N的圓心在直線y=x上, 當(dāng)兩圓外切于O點時,設(shè)圓N的圓心坐標(biāo)為(a,a), 則有=,解得a=3. 所以圓N的圓心坐標(biāo)為(3,3),半徑r=3, 故圓N的方程為(x-3)2+(y-3)2=18. 綜上可知,圓N的方程為(x-3)2+(y-3)2=18.(5分) (2)因為圓弧PQ恰為圓C周長的,所以CP⊥CQ. 所以點C到直線m的距離為5. 當(dāng)直線m的斜率不存在時,點C到y(tǒng)軸的距離為5,直線m即為y軸,所以此時直線m的方程為x=0. 當(dāng)直線m的斜率存在時,設(shè)直線m的方程為y=kx+

14、6,即kx-y+6=0, 所以=5, 解得k=. 所以此時直線m的方程為x-y+6=0, 故所求直線m的方程為x=0或x-y+6=0. (12分) 19.(本小題滿分12分)已知點M(x0,y0)在圓x2+y2=4上運動,N(4,0),點P(x,y)為線段MN的中點. (1)求點P(x,y)的軌跡方程; (2)求點P(x,y)到直線3x+4y-86=0的距離的最大值和最小值. 解析:(1)∵點P(x,y)是MN的中點,∴ 故將用x,y表示的x0,y0代入到x+y=4中得(x-2)2+y2=1.此式即為所求軌跡方程.(6分) (2)由(1)知點P的軌跡是以Q(2,0)為圓心

15、,以1為半徑的圓. 點Q到直線3x+4y-86=0的距離d==16. 故點P到直線3x+4y-86=0的距離的最大值為16+1=17,最小值為16-1=15.(12分) 20. (本小題滿分12分)如圖所示,圓O1和圓O2的半徑都等于1,O1O2=4,過動點P分別作圓O1,圓O2的切線PM,PN(M,N為切點),使PM=PN,試建立平面直角坐標(biāo)系,并求動點P的軌跡方程. 解析:如圖所示,以O(shè)1O2中點O為原點,O1O2所在直線為x軸建立平面直角坐標(biāo)系, 則O1(-2,0),O2(2,0).(2分) 已知PM=PN,得PM2=2PN2, 由兩圓半徑均為1得PO-1=2(PO-

16、1). 設(shè)點P(x,y),則(x+2)2+y2-1=2[(x-2)2+y2-1],(8分) 即(x-6)2+y2=33. 所以所求點P軌跡方程為(x-6)2+y2=33.(12分) 21.(本小題滿分12分)已知圓C:x2+y2-2x+4y-4=0,是否存在斜率為1的直線l,使以l被圓截得的弦AB為直徑的圓過原點?若存在,求出直線l的方程;若不存在,說明理由. 解析:假設(shè)存在斜率為1的直線l,滿足題意, 且OA⊥OB. 設(shè)直線l的方程是y=x+b,其與圓C的交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2), 則=-1, 即x1x2+y1y2=0?、?2分) 由消去y

17、得:2x2+2(b+1)x+b2+4b-4=0, ∴x1+x2=-(b+1),x1x2=(b2+4b-4),?、? (4分) y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2=(b2+4b-4)-b2-b+b2=(b2+2b-4). ③ (6分) 把②③式代入①式,得b2+3b-4=0, 解得b=1或b=-4,且b=1或b=-4都使得Δ=4(b+1)2-8(b2+4b-4)>0成立,(10分) 故存在直線l滿足題意,其方程為y=x+1或y=x-4.(12分) 22.(本小題滿分12分)已知與圓C:x2+y2-2x-2y+1=0相切的直線l交x軸,y軸于A,B兩

18、點,|OA|=a,|OB|=b(a>2,b>2). (1)求證:(a-2)(b-2)=2; (2)求線段AB中點的軌跡方程; (3)求△AOB面積的最小值. 解析:(1)證明:圓的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1,設(shè)直線方程為+=1,即bx+ay-ab=0,圓心到該直線的距離d==1, 即a2+b2+a2b2+2ab-2a2b-2ab2=a2+b2, 即a2b2+2ab-2a2b-2ab2=0, 即ab+2-2a-2b=0,即(a-2)(b-2)=2.(4分) (2)設(shè)AB中點M(x,y),則a=2x,b=2y,代入(a-2)(b-2)=2, 得(x-1)(y-1)=(x>1,y>1).(8分) (3)由(a-2)(b-2)=2得ab+2=2(a+b)≥4, 解得≥2+(舍去≤2-), 當(dāng)且僅當(dāng)a=b時,ab取最小值6+4, 所以△AOB面積的最小值是3+2.(12分) 最新精品資料

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!