《新編高考數(shù)學(xué)二輪復(fù)習(xí) 考前數(shù)學(xué)思想領(lǐng)航 一 函數(shù)與方程思想講學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)二輪復(fù)習(xí) 考前數(shù)學(xué)思想領(lǐng)航 一 函數(shù)與方程思想講學(xué)案 理(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料
一、函數(shù)與方程思想
函數(shù)思想
方程思想
函數(shù)思想的實(shí)質(zhì)是拋開所研究對(duì)象的非數(shù)學(xué)特征,用聯(lián)系和變化的觀點(diǎn)提出數(shù)學(xué)對(duì)象,抽象其數(shù)學(xué)特征,建立各變量之間固有的函數(shù)關(guān)系,通過函數(shù)形式,利用函數(shù)的有關(guān)性質(zhì),使問題得到解決
方程思想的實(shí)質(zhì)就是將所求的量設(shè)成未知數(shù),根據(jù)題中的等量關(guān)系,列方程(組),通過解方程(組)或?qū)Ψ匠?組)進(jìn)行研究,以求得問題的解決
函數(shù)與方程思想在一定的條件下是可以相互轉(zhuǎn)化的,是相輔相成的.函數(shù)思想重在對(duì)問題進(jìn)行動(dòng)態(tài)的研究,方程思想則是在動(dòng)中求解,研究運(yùn)動(dòng)中的等量關(guān)系
方法一 點(diǎn)坐標(biāo)代入函數(shù)(方程)法
模型解法
點(diǎn)坐標(biāo)代入函數(shù)(
2、方程)法是指把點(diǎn)“放到”函數(shù)圖象中去“入套”,通過構(gòu)造方程求解參數(shù)的方法.此方法適用于已知函數(shù)或函數(shù)圖象,給出滿足條件的點(diǎn)坐標(biāo),求其中的參數(shù)問題.破解此類題的關(guān)鍵點(diǎn):
①點(diǎn)代入函數(shù),把所給點(diǎn)坐標(biāo)代入已知函數(shù)的解析式中,得到關(guān)于參數(shù)的方程或不等式.
②解含參方程,求解關(guān)于參數(shù)的方程或不等式.
③檢驗(yàn)得結(jié)論,得出參數(shù)的值或取值范圍,最后代入方程或不等式進(jìn)行檢驗(yàn).
典例1 函數(shù)y=ax (a>0,且a≠1)的反函數(shù)的圖象過點(diǎn)(,a),則a的值為( )
A.2 B.3
C.2或 D.
解析 因?yàn)楹瘮?shù)y=ax(a>0,且a≠1)的反函數(shù)為y=logax(a>0,且a≠1),且y=l
3、ogax的圖象過點(diǎn)(,a),
所以a=loga,所以aa=,
所以a=,檢驗(yàn)易知當(dāng)a=時(shí),函數(shù)有意義.故選D.
答案 D
思維升華 應(yīng)用此方法的易錯(cuò)點(diǎn)是忘記檢驗(yàn),在解出方程后,一定要回頭望,把所求的解代入原函數(shù)中檢驗(yàn)是否有意義.
跟蹤演練1 函數(shù)y=logax(a>0,且a≠1)的反函數(shù)的圖象過點(diǎn)(a,),則a的值為_____.
答案
解析 因?yàn)楹瘮?shù)y=logax(a>0,且a≠1)的反函數(shù)y=ax(a>0,且a≠1)的圖象過點(diǎn)(a,),所以=aa,
即=aa,所以a=.經(jīng)檢驗(yàn)知a=符合要求.
方法二 平面向量問題的函數(shù)(方程)法
模型解法
平面向量問題的函數(shù)(方程)法
4、是把平面向量問題,通過模、數(shù)量積等轉(zhuǎn)化為關(guān)于相應(yīng)參數(shù)的函數(shù)(方程)問題,從而利用相關(guān)知識(shí)結(jié)合函數(shù)或方程思想來(lái)處理有關(guān)參數(shù)值問題.破解此類題的關(guān)鍵點(diǎn):
①向量代數(shù)化,利用平面向量中的模、數(shù)量積等結(jié)合向量的位置關(guān)系、數(shù)量積公式等進(jìn)行代數(shù)化,得到含有參數(shù)的函數(shù)(方程).
②代數(shù)函數(shù)(方程)化,利用函數(shù)(方程)思想,結(jié)合相應(yīng)的函數(shù)(方程)的性質(zhì)求解問題.
③得出結(jié)論,根據(jù)條件建立相應(yīng)的關(guān)系式,并得到對(duì)應(yīng)的結(jié)論.
典例2 已知a,b,c為平面上的三個(gè)向量,又a,b是兩個(gè)相互垂直的單位向量,向量c滿足|c|=3,c·a=2,c·b=1,則對(duì)于任意實(shí)數(shù)x,y,|c-xa-yb|的最小值為______
5、.
解析 由題意可知|a|=|b|=1,
a·b=0,又|c|=3,c·a=2,c·b=1,
所以|c-xa-yb|2=|c|2+x2|a|2+y2|b|2-2xc·a-2yc·b+2xya·b
=9+x2+y2-4x-2y=(x-2)2+(y-1)2+4,
當(dāng)且僅當(dāng)x=2,y=1時(shí),|c-xa-yb|=4,
所以|c-xa-yb|的最小值為2.
答案 2
思維升華 平面向量中含函數(shù)(方程)的相關(guān)知識(shí),對(duì)平面向量的模進(jìn)行平方處理,把模問題轉(zhuǎn)化為數(shù)量積問題,再利用函數(shù)與方程思想來(lái)分析與處理,這是解決此類問題一種比較常見的思維方式.
跟蹤演練2 已知e1,e2是平面上兩相互垂直的
6、單位向量,若平面向量b滿足|b|=2,b·e1=1,b·e2=1,則對(duì)于任意x,y∈R,|b-(xe1+ye2)|的最小值為________.
答案
解析 |b-(xe1+ye2)|2=b2+x2e+y2e-2xb·e1-2yb·e2+2xye1·e2=22+x2+y2-2x-2y
=(x-1)2+(y-1)2+2≥2,
當(dāng)且僅當(dāng)x=1,y=1時(shí),|b-(xe1+ye2)|2取得最小值,
此時(shí)|b-(xe1+ye2)|取得最小值.
方法三 不等式恰成立問題函數(shù)(方程)法
模型解法
含參不等式恰成立問題函數(shù)(方程)法是指通過構(gòu)造函數(shù),把恰成立問題轉(zhuǎn)化為函數(shù)的值域問題,從而得到關(guān)
7、于參數(shù)的方程的方法.破解此類題的關(guān)鍵點(diǎn):
①靈活轉(zhuǎn)化,即“關(guān)于x的不等式f(x)g(a)在區(qū)間D上恰成立”轉(zhuǎn)化為“函數(shù)y=f(x)在D上的值域是(g(a),+∞)”.
②求函數(shù)值域,利用函數(shù)的單調(diào)性、導(dǎo)數(shù)、圖象等求函數(shù)的值域.
③得出結(jié)論,列出參數(shù)a所滿足的方程,通過解方程,求出a的值.
典例3 關(guān)于x的不等式ex--1-x≥0在上恰成立,則a的取值集合為________.
解析 關(guān)于x的不等式ex--1-x≥0在上恰成立?函數(shù)g(x)=在上的值域?yàn)?
因?yàn)間′(x)=,
令
8、φ(x)=ex(x-1)-x2+1,x∈,
則φ′(x)=x(ex-1).
因?yàn)閤≥,所以φ′(x)>0,
故φ(x)在上單調(diào)遞增,
所以φ(x)≥φ=->0.
因此g′(x)>0,故g(x)在上單調(diào)遞增,
則g(x)≥g==2-,
所以a-=2-,解得a=2,
所以a的取值集合為{2}.
答案 {2}
思維升華 求解此類含參不等式恰成立問題時(shí)注意與含參不等式恒成立問題區(qū)分開,含參不等式恰成立問題一般轉(zhuǎn)化為求函數(shù)的值域,得參數(shù)的方程;而含參不等式恒成立問題一般轉(zhuǎn)化為最值問題.
跟蹤演練3 關(guān)于x的不等式x+-1-a2+2a>0在(2,+∞)上恰成立,則a的取值集合為___
9、_______.
答案 {-1,3}
解析 關(guān)于x的不等式x+-1-a2+2a>0在(2,+∞)上恰成立?函數(shù)f(x)=x+在(2,+∞)上的值域?yàn)?a2-2a+1,+∞).
由f(x)=x+,x∈(2,+∞),
可得f′(x)=1-=>0,
所以f(x)=x+在(2,+∞)上為單調(diào)遞增函數(shù),
所以f(x)>f(2)=4.
又關(guān)于x的不等式x+>a2-2a+1在(2,+∞)上恰成立,所以a2-2a+1=4,解得a=-1或a=3.
方法四 解析幾何問題的函數(shù)(方程)法
模型解法
解析幾何問題的函數(shù)(方程)法是解決解析幾何問題中比較常見的一種方法,通過函數(shù)(方程)法把解析幾何
10、問題代數(shù)化,利用函數(shù)或方程進(jìn)行求解,其關(guān)鍵是根據(jù)題意,構(gòu)造恰當(dāng)?shù)暮瘮?shù)或建立相應(yīng)的方程解決問題.破解此類題的關(guān)鍵點(diǎn):
①代數(shù)化,把直線、圓、圓錐曲線以及直線與圓、直線與圓錐曲線的位置關(guān)系等轉(zhuǎn)化為代數(shù)問題,構(gòu)造函數(shù)解析式或方程.
②函數(shù)(方程)應(yīng)用,利用函數(shù)的相關(guān)性質(zhì)或方程思想來(lái)求解含有參數(shù)的解析幾何問題.
③得出結(jié)論,結(jié)合解析幾何中的限制條件和函數(shù)(方程)的結(jié)論得出最終結(jié)論.
典例4 已知直線l過定點(diǎn)S(4,0),與+=1(x≠±2)交于P,Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為P′,連接P′Q交x軸于點(diǎn)T,當(dāng)△PQT的面積最大時(shí),直線l的方程為_____.
解析 設(shè)直線l的方程為x=ky+4
11、(k≠0),
聯(lián)立
消去x得(3k2+4)y2+24ky+36=0,
Δ=576k2-4×36(3k2+4)=144(k2-4)>0,即k2>4.
設(shè)P(x1,y1),Q(x2,y2),則P′(x1,-y1).
由根與系數(shù)的關(guān)系,得
直線P′Q的方程為y=(x-x1)-y1,
令y=0,得x=
=
=,
將①②代入上式得x=1,
即T(1,0),所以|ST|=3,
所以S△PQT=|S△STQ-S△STP|
=|ST||y1-y2|=
=·
==
=≤,
當(dāng)且僅當(dāng)k2=,即k=±時(shí)取等號(hào).
故所求直線l的方程為x=y(tǒng)+4或x=-y+4.
答案 x=y(tǒng)+
12、4或x=-y+4
思維升華 直線與圓錐曲線的綜合問題,通常借助根的判別式和根與系數(shù)的關(guān)系進(jìn)行求解,這是方程思想在解析幾何中的重要應(yīng)用.解析幾何問題的方程(函數(shù))法可以拓展解決解析幾何問題的思維,通過代數(shù)運(yùn)算、方程判定等解決解析幾何中的位置關(guān)系、參數(shù)取值等問題.
跟蹤演練4 橢圓C1:+=1和圓C2:x2+(y+1)2=r2 (r>0),若兩條曲線沒有公共點(diǎn),則r的取值范圍是______________.
答案 (0,1)∪
解析 方法一 聯(lián)立C1和C2的方程,消去x,
得到關(guān)于y的方程-y2+2y+10-r2=0, ①
方程①可變形為r2=-y2+2y+10,
把r2=-y2+2
13、y+10看作關(guān)于y的函數(shù).
由橢圓C1可知,-2≤y≤2,
因此,求使圓C2與橢圓C1有公共點(diǎn)的r的集合,等價(jià)于在定義域?yàn)閥∈[-2,2]的情況下,求函數(shù)r2=f(y)=-y2+2y+10的值域.
由f(-2)=1,f(2)=9,f?=,
可得f(y)的值域是r2∈,即r∈,
它的補(bǔ)集就是圓C2與橢圓C1沒有公共點(diǎn)的r的集合,因此,兩條曲線沒有公共點(diǎn)的r的取值范圍是(0,1)∪.
方法二 聯(lián)立C1和C2的方程消去x,得到關(guān)于y的方程-y2+2y+10-r2=0.①
兩條曲線沒有公共點(diǎn),等價(jià)于方程-y2+2y+10-r2=0要么沒有實(shí)數(shù)根,要么有兩個(gè)根y1,y2?[-2,2].
若沒有實(shí)數(shù)根,則Δ=4-4××(10-r2)<0,
解得r>或r<-.
若兩個(gè)根y1,y2?[-2,2],設(shè)φ(y)=-y2+2y+10-r2,其圖象的對(duì)稱軸方程為y=∈[-2,2].
則又r>0,解得0