新編高考數(shù)學(xué)二輪復(fù)習(xí) 考前回扣3 導(dǎo)數(shù)講學(xué)案 理

上傳人:仙*** 文檔編號:62471285 上傳時間:2022-03-15 格式:DOC 頁數(shù):10 大小:198.50KB
收藏 版權(quán)申訴 舉報 下載
新編高考數(shù)學(xué)二輪復(fù)習(xí) 考前回扣3 導(dǎo)數(shù)講學(xué)案 理_第1頁
第1頁 / 共10頁
新編高考數(shù)學(xué)二輪復(fù)習(xí) 考前回扣3 導(dǎo)數(shù)講學(xué)案 理_第2頁
第2頁 / 共10頁
新編高考數(shù)學(xué)二輪復(fù)習(xí) 考前回扣3 導(dǎo)數(shù)講學(xué)案 理_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)二輪復(fù)習(xí) 考前回扣3 導(dǎo)數(shù)講學(xué)案 理》由會員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)二輪復(fù)習(xí) 考前回扣3 導(dǎo)數(shù)講學(xué)案 理(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、新編高考數(shù)學(xué)復(fù)習(xí)資料 回扣3 導(dǎo) 數(shù) 1.導(dǎo)數(shù)的幾何意義 (1)f′(x0)的幾何意義:曲線y=f(x)在點(x0,f(x0))處的切線的斜率,該切線的方程為y-f(x0)=f′(x0)·(x-x0). (2)切點的兩大特征:①在曲線y=f(x)上;②在切線上. 2.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性 (1)求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟 ①求函數(shù)f(x)的定義域; ②求導(dǎo)函數(shù)f′(x); ③由f′(x)>0的解集確定函數(shù)f(x)的單調(diào)增區(qū)間,由f′(x)<0的解集確定函數(shù)f(x)的單調(diào)減區(qū)間. (2)由函數(shù)的單調(diào)性求參數(shù)的取值范圍:①若可導(dǎo)函數(shù)f(x)在區(qū)間M上單調(diào)遞增,則f′(

2、x)≥0(x∈M)恒成立;若可導(dǎo)函數(shù)f(x)在區(qū)間M上單調(diào)遞減,則f′(x)≤0(x∈M)恒成立; ②若可導(dǎo)函數(shù)在某區(qū)間上存在單調(diào)遞增(減)區(qū)間,f′(x)>0(或f′(x)<0)在該區(qū)間上存在解集; ③若已知f(x)在區(qū)間I上的單調(diào)性,區(qū)間I中含有參數(shù)時,可先求出f(x)的單調(diào)區(qū)間,則I是其單調(diào)區(qū)間的子集. 3.利用導(dǎo)數(shù)研究函數(shù)的極值與最值 (1)求函數(shù)的極值的一般步驟 ①確定函數(shù)的定義域; ②解方程f′(x)=0; ③判斷f′(x)在方程f′(x)=0的根x0兩側(cè)的符號變化: 若左正右負,則x0為極大值點; 若左負右正,則x0為極小值點; 若不變號,則x0不是極值點.

3、 (2)求函數(shù)f(x)在區(qū)間[a,b]上的最值的一般步驟 ①求函數(shù)y=f(x)在[a,b]內(nèi)的極值; ②比較函數(shù)y=f(x)的各極值與端點處的函數(shù)值f(a),f(b)的大小,最大的一個是最大值,最小的一個是最小值. 4.定積分的三個公式與一個定理 (1)定積分的性質(zhì): ①?kf(x)dx=k?f(x)dx; ②?[f1(x)±f2(x)]dx=?f1(x)dx±?f2(x)dx. ③?f(x)dx=?f(x)dx+?f(x)dx(其中a

4、F(a). 1.已知可導(dǎo)函數(shù)f(x)在(a,b)上單調(diào)遞增(減),則f′(x)≥0(≤0)對?x∈(a,b)恒成立,不能漏掉“=”,且需驗證“=”不能恒成立;已知可導(dǎo)函數(shù)f(x)的單調(diào)遞增(減)區(qū)間為(a,b),則f′(x)>0(<0)的解集為(a,b). 2.f′(x)=0的解不一定是函數(shù)f(x)的極值點.一定要檢驗在x=x0的兩側(cè)f′(x)的符號是否發(fā)生變化,若變化,則為極值點;若不變化,則不是極值點. 1.a(chǎn),b,c依次表示函數(shù)f(x)=2x+x-2,g(x)=3x+x-2,h(x)=lnx+x-2的零點,則a,b,c的大小順序為(  ) A.c

5、 C.a(chǎn)

6、 答案 C 解析 根據(jù)f′(x)的符號,f(x)圖象應(yīng)該是先下降后上升,最后下降,排除A,D;從適合f′(x)=0的點可以排除B,故選C. 4.設(shè)曲線f(x)=-ex-x(e為自然對數(shù)的底數(shù))上任意一點處的切線為l1,總存在曲線g(x)=3ax+2cos x上某點處的切線l2,使得l1⊥l2,則實數(shù)a的取值范圍為(  ) A.[-1,2] B.(3,+∞) C. D. 答案 D 解析 由f(x)=-ex-x,得f′(x)=-ex-1, 因為ex+1>1,所以∈(0,1), 由g(x)=3ax+2cos x,得g′(x)=3a-2sin x, 又-2sin x∈[-2

7、,2], 所以3a-2sin x∈[-2+3a,2+3a], 要使過曲線f(x)=-ex-x上任意一點的切線l1, 總存在過曲線g(x)=3ax+2cos x上一點處的切線l2, 使得l1⊥l2,則 解得-≤a≤. 5.(2016·四川)已知a為函數(shù)f(x)=x3-12x的極小值點,則a等于(  ) A.-4 B.-2 C.4 D.2 答案 D 解析 ∵f(x)=x3-12x,∴f′(x)=3x2-12,令f′(x)=0,則x1=-2,x2=2. 當x∈(-∞,-2),(2,+∞)時,f′(x)>0,f(x)單調(diào)遞增; 當x∈(-2,2)時,f′(x)<0,f(x

8、)單調(diào)遞減, ∴f(x)的極小值點為a=2. 6.(2016·全國Ⅰ)若函數(shù)f(x)=x-sin 2x+asinx在(-∞,+∞)上單調(diào)遞增,則a的取值范圍是(  ) A.[-1,1] B. C. D. 答案 C 解析 方法一 (特殊值法) 不妨取a=-1,則f(x)=x-sin 2x-sin x, f′(x)=1-cos 2x-cosx,但f′(0)=1--1=-<0,不具備在(-∞,+∞)上單調(diào)遞增,排除A,B,D.故選C. 方法二 (綜合法) ∵函數(shù)f(x)=x-sin 2x+asinx在(-∞,+∞)上單調(diào)遞增, ∴f′(x)=1-cos 2x+acosx =1

9、-(2cos2x-1)+acosx =-cos2x+acosx+≥0, 即acosx≥cos2x-在(-∞,+∞)上恒成立. 當cosx=0時,恒有0≥-,得a∈R; 當0

10、2>0,排除A;f(2)=8-e2<8-2.72<1,排除B;在x>0時,f(x)=2x2-ex,f′(x)=4x-ex,當x∈時,f′(x)<×4-e0=0,因此f(x)在上單調(diào)遞減,排除C,故選D. 8.已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值10,則f(2)等于(  ) A.11或18 B.11 C.18 D.17或18 答案 C 解析 ∵函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值10,f′(x)=3x2+2ax+b,∴f(1)=10,且f′(1)=0, 即解得或 而當時,函數(shù)在x=1處無極值,故舍去. ∴f(x)=x3+4x2-11

11、x+16, ∴f(2)=18. 9.若函數(shù)f(x)=x2-lnx+1在其定義域內(nèi)的一個子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實數(shù)k的取值范圍是(  ) A.[1,+∞) B. C.[1,2) D. 答案 B 解析 因為f(x)的定義域為(0,+∞),f′(x)=2x-, 由f′(x)=0,得x=. 利用圖象可得 解得1≤k<,故選B. 10.已知奇函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),當x>0時,有2f(x)+xf′(x)>x2,則不等式(x+2 018)2f(x+2 018)+4f(-2)<0的解集為(  ) A.(-∞,-2 016)

12、 B.(-2 016,-2 012) C.(-∞,-2 018) D.(-2 016,0) 答案 A 解析 由題觀察聯(lián)想可設(shè)g(x)=x2f(x),g′(x)=2xf(x)+x2f′(x),結(jié)合條件x>0,2f(x)+xf′(x)>x2,得g′(x)=2xf(x)+x2f′(x)>0,g(x)=x2f(x)在(0,+∞)上為增函數(shù). 又f(x)為R上的奇函數(shù),所以g(x)為奇函數(shù), 所以g(x)在(-∞,0)上為增函數(shù). 由(x+2 018)2f(x+2 018)+4f(-2)<0, 可得(x+2 018)2f(x+2 018)<4f(2), 即g(x+2 018)<g(

13、2), 所以x+2 018<2,故x<-2 016,故選A. 11.?(+x+x3)dx=________. 答案  解析 因為?(+x+x3)dx =?dx+?(x+x3)dx, ?(x+x3)dx==, ?dx等于以原點為圓心,以1為半徑的圓的面積的四分之一,即為, 所以?(+x+x3)dx=. 12.函數(shù)f(x)=x3-3a2x+a(a>0)的極大值是正數(shù),極小值是負數(shù),則a的取值范圍是________. 答案  解析 f′(x)=3x2-3a2=3(x+a)(x-a), 由f′(x)=0,得x=±a, 當-a

14、a或x<-a時,f′(x)>0,函數(shù)單調(diào)遞增. ∴f(-a)=-a3+3a3+a>0且f(a)=a3-3a3+a<0, 解得a>.∴a的取值范圍是. 13.已知曲線C:y=f(x)=x3-ax+a,若過曲線C外一點A(1,0)引曲線C的兩條切線,它們的傾斜角互補,則a的值為________. 答案  解析 設(shè)切點坐標為(t,t3-at+a). 由題意知,f′(x)=3x2-a, 切線的斜率為k=y(tǒng)′|x=t=3t2-a,① 所以切線方程為y-(t3-at+a)=(3t2-a)(x-t).② 將點(1,0)代入②式,得 -(t3-at+a)=(3t2-a)(1-t),解得t=

15、0或t=. 分別將t=0和t=代入①式,得k=-a和k=-a, 由題意它們互為相反數(shù),得a=. 14.已知函數(shù)f(x)=x-,g(x)=x2-2ax+4,若對任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),則實數(shù)a的取值范圍是________. 答案  解析 由于f′(x)=1+>0, 因此函數(shù)f(x)在[0,1]上單調(diào)遞增, 所以當x∈[0,1]時,f(x)min=f(0)=-1. 根據(jù)題意可知,存在x∈[1,2], 使得g(x)=x2-2ax+4≤-1, 即x2-2ax+5≤0,即a≥+成立, 令h(x)=+, 則若存在x∈[1,2],使a≥h

16、(x)成立, 只需使a≥h(x)min, 又函數(shù)h(x)=+在[1,2]上單調(diào)遞減, 所以h(x)min=h(2)=,故只需a≥. 所以a的取值范圍是. 15.設(shè)函數(shù)f(x)=xekx (k≠0). (1)求曲線y=f(x)在點(0,f(0))處的切線方程; (2)求函數(shù)f(x)的單調(diào)區(qū)間; (3)若函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞增,求k的取值范圍. 解 (1)由題意可得f′(x)=(1+kx)ekx, f′(0)=1,f(0)=0, 故曲線y=f(x)在點(0,f(0))處的切線方程為x-y=0. (2)由f′(x)=(1+kx)ekx=0,得x=-(k≠0)

17、, 若k>0,則當x∈時,f′(x)<0,函數(shù)f(x)單調(diào)遞減, 當x∈時,f′(x)>0,函數(shù)f(x)單調(diào)遞增; 若k<0,則當x∈時,f′(x)>0,函數(shù)f(x)單調(diào)遞增, 當x∈時,f′(x)<0,函數(shù)f(x)單調(diào)遞減. 所以當k>0時,f(x)的單調(diào)遞增區(qū)間為, 單調(diào)遞減區(qū)間為; 當k<0時,f(x)的單調(diào)遞增區(qū)間為, 單調(diào)遞減區(qū)間為. (3)由(2)知,若k>0,則當且僅當-≤-1, 即0

18、在區(qū)間(-1,1)上單調(diào)遞增時, k的取值范圍是[-1,0)∪(0,1]. 16.已知函數(shù)f(x)=,其中a>0,且函數(shù)f(x)的最大值是. (1)求實數(shù)a的值; (2)若函數(shù)g(x)=lnf(x)-b有兩個零點,求實數(shù)b的取值范圍; (3)若對任意的x∈(0,2),都有f(x)<成立,求實數(shù)k的取值范圍. 解 (1)由題意得f′(x)=, 因為a>0,所以當x∈(-∞,1)時,f′(x)>0, f(x) 在(-∞,1)上單調(diào)遞增; 當x∈(1,+∞)時,f′(x)<0,f(x)在(1,+∞)上單調(diào)遞減, 則f(x)max=f(1)==,所以a=1. (2)由題意知,函數(shù)

19、g(x)=lnf(x)-b=lnx-x-b(x>0),所以g′(x)=-1=, 易得函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,所以g(x)max=g(1)=-1-b, 依題意知,-1-b>0,則b<-1, 所以實數(shù)b的取值范圍是(-∞,-1). (3)由題意知,f(x)=<對任意x∈(0,2)都成立, 所以k+2x-x2>0,即k>x2-2x對任意x∈(0,2)都成立,從而k≥0. 又不等式整理可得k<+x2-2x, 令h(x)=+x2-2x, 所以令h′(x)=+2(x-1) =(x-1)=0,得x=1, 當x∈(1,2)時,h′(x)>0,函數(shù)h(x)在(1,2)上單調(diào)遞增, 同理,函數(shù)h(x)在(0,1)上單調(diào)遞減, h(x)min=h(1)=e-1. 依題意得k<h(x)min=h(1)=e-1, 綜上所述,實數(shù)k的取值范圍是[0,e-1).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!