高中數(shù)學人教A版選修45 第四講 數(shù)學歸納法證明不等式 學業(yè)分層測評12 Word版含答案

上傳人:痛*** 文檔編號:63371036 上傳時間:2022-03-18 格式:DOC 頁數(shù):6 大?。?21KB
收藏 版權申訴 舉報 下載
高中數(shù)學人教A版選修45 第四講 數(shù)學歸納法證明不等式 學業(yè)分層測評12 Word版含答案_第1頁
第1頁 / 共6頁
高中數(shù)學人教A版選修45 第四講 數(shù)學歸納法證明不等式 學業(yè)分層測評12 Word版含答案_第2頁
第2頁 / 共6頁
高中數(shù)學人教A版選修45 第四講 數(shù)學歸納法證明不等式 學業(yè)分層測評12 Word版含答案_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學人教A版選修45 第四講 數(shù)學歸納法證明不等式 學業(yè)分層測評12 Word版含答案》由會員分享,可在線閱讀,更多相關《高中數(shù)學人教A版選修45 第四講 數(shù)學歸納法證明不等式 學業(yè)分層測評12 Word版含答案(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 學業(yè)分層測評(十二) (建議用時:45分鐘) [學業(yè)達標] 一、選擇題 1.設f(n)=1+++…+(n∈N+),則f(n+1)-f(n)等于(  ) A. B.+ C.+ D.++ 【解析】 因為f(n)=1+++…+,所以f(n+1)=1+++…++++,所以f(n+1)-f(n)=++.故選D. 【答案】 D 2.在應用數(shù)學歸納法證明凸n邊形的對角線為n(n-3)條時,第一步檢驗第一個值n0等于(  ) A.1 B.2 C.3 D.0 【解析】 邊數(shù)最少的凸n邊形是三角形. 【答案】 C 3.已知a1=,an+1=,猜想an

2、等于(  ) A. B. C. D. 【解析】 a2==, a3==, a4===, 猜想an=. 【答案】 D 4.用數(shù)學歸納法證明:(n+1)(n+2)…·(n+n)=2n×1×3…(2n-1)時,從“k到k+1”左邊需增乘的代數(shù)式是(  ) A.2k+1 B. C.2(2k+1) D. 【解析】 當n=k+1時,左邊=(k+1+1)(k+1+2)…·(k+1+k+1)=(k+1)·(k+2)·(k+3)…(k+k)·=(k+1)(k+2)(k+3)…(k+k)·2(2k+1). 【答案】 C 5.記凸k邊形的內(nèi)角和為f(k),則凸k+1邊形的內(nèi)

3、角和f(k+1)等于f(k)加上(  ) A. B.π C.2π D.π 【解析】 從n=k到n=k+1時, 內(nèi)角和增加π. 【答案】 B 二、填空題 6.觀察式子1=1,1-4=-(1+2),1-4+9=1+2+3,…,猜想第n個式子應為________. 【答案】 1-4+9-16+…+(-1)n-1n2 =(-1)n+1· 7.用數(shù)學歸納法證明“1+2+22+…+2n-1=2n-1(n∈N+)”的過程中,第二步假設n=k時等式成立,則當n=k+1時應得到________. 【解析】 ∵n=k時,命題為“1+2+22+…+2k-1=2k-1”, ∴n=k+1

4、時為使用歸納假設, 應寫成1+2+22+…+2k-1+2k=2k-1+2k=2k+1-1. 【答案】 1+2+22+…+2k-1+2k=2k+1-1 8.用數(shù)學歸納法證明34n+1+52n+1(n∈N+)能被14整除,當n=k+1時,對于34(k+1)+1+52(k+1)+1應變形為________. 【解析】 34(k+1)+1+52(k+1)+1=34k+5+52k+3=81×34k+1+25×52k+1=81×34k+1+81×52k+1-56×52k+1=81×(34k+1+52k+1)-56×52k+1. 【答案】 81×(34k+1+52k+1)-56×52k+1 三、

5、解答題 9.用數(shù)學歸納法證明: …=(n≥2,n∈N+). 【證明】 (1)當n=2時,左邊=1-=,右邊==. ∴等式成立. (2)假設當n=k(k≥2,k∈N+)時,等式成立, 即…=(k≥2,k∈N+). 當n=k+1時, … =·= ==, ∴當n=k+1時,等式成立. 根據(jù)(1)和(2)知,對n≥2,n∈N+時,等式成立. 10.用數(shù)學歸納法證明:對于任意正整數(shù)n,整式an-bn都能被a-b整除. 【證明】 (1)當n=1時,an-bn=a-b能被a-b整除. (2)假設當n=k(k∈N+,k≥1)時,ak-bk能被a-b整除,那么當n=k+1時,ak+

6、1-bk+1=ak+1-akb+akb-bk+1=ak(a-b)+b(ak-bk).因為(a-b)和ak-bk都能被a-b整除,所以上面的和ak(a-b)+b(ak-bk)也能被a-b整除.這也就是說當n=k+1時,ak+1-bk+1能被a-b整除. 根據(jù)(1)(2)可知對一切正整數(shù)n,an-bn都能被a-b整除. [能力提升] 1.設f(n)=+++…+(n∈N+),那么f(n+1)-f(n)等于(  ) A. B. C.+ D.- 【解析】 因為f(n)=++…+, 所以f(n+1)=++…+++, 所以f(n+1)-f(n)=+-=-. 【答案】 D 2.某

7、同學回答“用數(shù)學歸納法證明<n+1(n∈N+)的過程如下: 證明:(1)當n=1時,顯然命題是正確的: (2)假設n=k時有<k+1,那么當n=k+1時,=<=(k+1)+1,所以當n=k+1時命題是正確的.由(1)(2)可知對于n∈N+,命題都是正確的.以上證法是錯誤的,錯誤在于(  ) A.從k到k+1的推理過程沒有使用歸納假設 B.歸納假設的寫法不正確 C.從k到k+1的推理不嚴密 D.當n=1時,驗證過程不具體 【解析】 證明<(k+1)+1時進行了一般意義的放大.而沒有使用歸納假設<k+1. 【答案】 A 3.用數(shù)學歸納法證明22+32+…+n2=-1(n∈N+,且

8、n>1)時,第一步應驗證n=________,當n=k+1時,左邊的式子為________. 【解析】 ∵所證明的等式為 22+32+…+n2=-1(n∈N+,n>1). 又∵第一步驗證的值應為第一個值(初始值), ∴n應為2. 又∵當n=k+1時,等式左邊的式子實際上是將左邊式子中所有的n換成k+1, 即22+32+…+k2+(k+1)2. 【答案】 2 22+32+…+k2+(k+1)2 4.是否存在常數(shù)a,b,c使等式(n2-12)+2(n2-22)+…+n(n2-n2)=an4+bn2+c對一切正整數(shù)n成立?證明你的結(jié)論. 【解】 存在.分別用n=1,2,3代入,解方

9、程組得 故原等式右邊=-. 下面用數(shù)學歸納法證明. (1)當n=1時,由上式可知等式成立. (2)假設當n=k(k∈N+,k≥1)時等式成立,即(k2-12)+2(k2-22)+…+k(k2-k2)=k4-k2. 則當n=k+1時, 左邊=[(k+1)2-12]+2[(k+1)2-22]+…+k[(k+1)2-k2]+(k+1)·[(k+1)2-(k+1)2]=(k2-12)+2(k2-22)+…+k(k2-k2)+(2k+1)+2(2k+1)+…+k(2k+1)=k4-k2+(2k+1)·=(k+1)4-(k+1)2,故n=k+1時,等式成立. 由(1)(2)得等式對一切n∈N+均成立. 最新精品資料

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!