轎車前門內(nèi)板焊裝夾具設(shè)計(jì)【含12張CAD圖紙、畢業(yè)論文】
資源目錄里展示的全都有,所見(jiàn)即所得。下載后全都有,請(qǐng)放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問(wèn)可加】
SY-025-BY-2
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
學(xué)生姓名
系部
汽車與交通工程學(xué)院
專業(yè)、班級(jí)
指導(dǎo)教師姓名
職稱
教授
從事
專業(yè)
車輛工程
是否外聘
□是√否
題目名稱
轎車前門內(nèi)板焊裝夾具設(shè)計(jì)
一、設(shè)計(jì)(論文)目的、意義
汽車制造水平對(duì)汽車工業(yè)的發(fā)展起著至關(guān)重要的作用,就我國(guó)目前我國(guó)的汽車生產(chǎn)水平而言,除了從國(guó)外引進(jìn)的一部分先進(jìn)技術(shù)和工裝設(shè)備外,整體水平還很低。其中較為突出的是在汽車裝焊工藝方面自動(dòng)化程度比較低。汽車焊裝夾具可以保證和提高汽車產(chǎn)品質(zhì)量,提高勞動(dòng)生產(chǎn)率,改善勞動(dòng)生產(chǎn)條件,降低產(chǎn)品制造成本,提高裝焊自動(dòng)化程度。因此汽車焊裝夾具設(shè)計(jì)水平的提高成為一個(gè)提高汽車制造業(yè)水平的有效途徑,受到國(guó)內(nèi)外汽車行業(yè)的廣泛關(guān)注。合理的設(shè)計(jì)焊裝夾具是保證焊接質(zhì)量、提高勞動(dòng)生產(chǎn)率、減輕工人勞動(dòng)強(qiáng)度、降低車身制造成本的根本途徑。
二、設(shè)計(jì)(論文)內(nèi)容、技術(shù)要求(研究方法)
設(shè)計(jì)內(nèi)容:
1.選題的背景、目的及意義;
2.焊裝夾具設(shè)計(jì)方法步驟研究;
3.轎車前門內(nèi)板焊裝工藝分析;
4.焊裝夾具的夾緊位置及定位方式;
5.焊裝夾具結(jié)構(gòu)設(shè)計(jì);
6.CAD繪制夾具圖紙;
7.撰寫設(shè)計(jì)說(shuō)明書。
技術(shù)要求:
1.設(shè)計(jì)轎車前門內(nèi)板焊裝夾具;
2.要求:保證加工質(zhì)量,設(shè)計(jì)標(biāo)準(zhǔn)化、系列化;
3.生產(chǎn)綱領(lǐng):成批生產(chǎn)。
三、設(shè)計(jì)(論文)完成后應(yīng)提交的成果
CAD繪制轎車前門內(nèi)板焊裝夾具裝配圖、零件圖折合0號(hào)圖紙3張以上,設(shè)計(jì)說(shuō)明書15000字以上。
四、設(shè)計(jì)(論文)進(jìn)度安排
(1)知識(shí)準(zhǔn)備、調(diào)研、收集資料、完成開(kāi)題報(bào)告 第1~2周(2.28~3.11)
(2)整理資料、提出問(wèn)題、撰寫設(shè)計(jì)說(shuō)明書草稿、轎車前門焊裝工藝分析 第3~5周(3.14~4.1)
(3)理論聯(lián)系實(shí)際、分析問(wèn)題、解決問(wèn)題,分析焊裝夾具的夾緊位置及定位方式,焊裝夾具結(jié)構(gòu)設(shè)計(jì),CAD繪制夾具裝配草圖等部分設(shè)計(jì)內(nèi)容,中期檢查 第6~8周(4.4~4.22)
(4)改進(jìn)完成設(shè)計(jì),改進(jìn)完成設(shè)計(jì)說(shuō)明書,指導(dǎo)教師審核,學(xué)生修改 第9~12周(4.25~5.20)
(5)評(píng)閱教師評(píng)閱、學(xué)生修改 第13周(5.23~5.27)
(6)畢業(yè)設(shè)計(jì)預(yù)答辯 第14周(5.30~6.3)
(7)畢業(yè)設(shè)計(jì)修改 第15~16周(6.6~6.17)
(8)畢業(yè)設(shè)計(jì)答辯 第17周(6.20~6.24)
五、主要參考資料
1.楊握銓.汽車裝焊技術(shù)及夾具設(shè)計(jì).北京理工大學(xué)出版社
2.韓根云.汽車車身焊接夾具的設(shè)計(jì).新技術(shù)新工藝
3.王政,劉萍,焊接工裝夾具及變位機(jī)械圖冊(cè).北京:機(jī)械工業(yè)出版社
4.黃天澤,黃金陵主編,汽車車身結(jié)構(gòu)與設(shè)計(jì).北京:機(jī)械工業(yè)出版社
5.陳家起,羅虹,張偉編,汽車車身制造工藝學(xué).重慶:重慶大學(xué)出版社
6.盛步云等,虛擬制造系統(tǒng)中汽車覆蓋件焊接夾具設(shè)計(jì)方法.武漢:武漢汽車工業(yè)大學(xué)學(xué)報(bào)
7.網(wǎng)絡(luò)資源,超星數(shù)字圖書館
8.近幾年相關(guān)專業(yè)CNKI網(wǎng)絡(luò)期刊等
六、備注
指導(dǎo)教師簽字:
年 月 日
教研室主任簽字:
年 月 日
本科學(xué)生畢業(yè)設(shè)計(jì)
轎車前門內(nèi)板焊裝夾具設(shè)計(jì)
系部名稱:
專業(yè)班級(jí):
學(xué)生姓名:
指導(dǎo)教師:
職 稱:
The Graduation Design for Bachelor's Degree
Design of Automobile’s Front Door Inner Panel Welding-Installation Fixtures
畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
設(shè)計(jì)(論文)題目: 轎車前門內(nèi)板焊裝夾具設(shè)計(jì)
院 系 名 稱: 汽車與交通工程學(xué)院
專 業(yè) 班 級(jí):
學(xué) 生 姓 名:
導(dǎo) 師 姓 名:
開(kāi) 題 時(shí) 間:
指導(dǎo)委員會(huì)審查意見(jiàn):
簽字: 年 月 日
SY-025-BY-3
畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
學(xué)生姓名
系部
汽車與交通工程學(xué)院
專業(yè)、班級(jí)
指導(dǎo)教師姓名
職稱
教授
從事
專業(yè)
車輛工程
是否外聘
□是√否
題目名稱
轎車前門內(nèi)板焊裝夾具設(shè)計(jì)
一、課題研究現(xiàn)狀、選題目的和意義
1.課題研究現(xiàn)狀
(1)汽車工業(yè)的發(fā)展現(xiàn)狀
隨著國(guó)民經(jīng)濟(jì)的蓬勃發(fā)展,汽車已一躍成為當(dāng)前極為重要的交通工具。從全世界范圍來(lái)看,目前還找不出一個(gè)無(wú)汽車的現(xiàn)代化社會(huì)的先例。改革開(kāi)放以來(lái),我國(guó)的汽車工業(yè)得到較快的發(fā)展,產(chǎn)量,品種,型號(hào)日益增多。但由于我國(guó)的汽車工業(yè)起步較晚,集團(tuán)化程度不高,其產(chǎn)量,質(zhì)量與發(fā)達(dá)國(guó)家相比還存在較大的差距,因此面臨著國(guó)際汽車發(fā)展浪潮的機(jī)遇和壓力。
汽車生產(chǎn)制造水平對(duì)汽車工業(yè)的發(fā)展起著至關(guān)重要的作用,而汽車產(chǎn)量和質(zhì)量的提高又涉及到眾多的方面,包括原材料,工藝,工裝設(shè)備和管理水平等等。就我國(guó)目前汽車生產(chǎn)水平而言,除某些生產(chǎn)廠或合資廠從國(guó)外引進(jìn)一部分先進(jìn)技術(shù)和工裝設(shè)備外,不少生產(chǎn)廠生產(chǎn)制造水平很低。較為突出的是在汽車大型覆蓋件的沖壓工藝及模具,汽車裝焊設(shè)備及夾具和胎具,汽車涂裝等生產(chǎn)技術(shù)方面還很落后,它直接影響著生產(chǎn)規(guī)模,生產(chǎn)效率和生產(chǎn)質(zhì)量。尤其是汽車裝焊工藝方面自動(dòng)化程度很低,專業(yè)人才緊缺。汽車工業(yè)在帶動(dòng)其他各行各業(yè)的發(fā)展中,已日益顯示出極為重要支柱產(chǎn)業(yè)的作用。汽車制造水平對(duì)汽車工業(yè)的發(fā)展起著至關(guān)重要的作用,就我國(guó)目前的汽車生產(chǎn)水平而言,除了從國(guó)外引進(jìn)的一部分先進(jìn)技術(shù)和工裝設(shè)備外,整體水平還很低,其中較為突出的是在汽車裝焊工藝方面自動(dòng)化程度比較低。
(2)汽車焊裝夾具在汽車車身制造中的發(fā)展
汽車車身是汽車的重要組成部分,是整個(gè)汽車零部件的載體,它的重量和制造成本占整車的 40%~60%,它通常是由 300~500 多個(gè)具有復(fù)雜空間曲面的薄板沖壓。通過(guò)裝焊、鉚接和機(jī)械聯(lián)接等方法而構(gòu)成一個(gè)完整的車體。其中焊接是最主要的聯(lián)接方法,它直接影響著車身質(zhì)量、生產(chǎn)率和經(jīng)濟(jì)性。在生產(chǎn)線上有 200 個(gè)左右的裝配工作站進(jìn)行大批量、快節(jié)奏的焊裝生產(chǎn)。焊裝夾具(welding fixture) 就是為保證焊件尺寸,提高裝配效率,防止焊接變形所采用的工藝裝備。汽車焊裝結(jié)構(gòu)生產(chǎn)中裝配和焊接是兩個(gè)重要的生產(chǎn)環(huán)節(jié),完成這兩個(gè)環(huán)節(jié)的工藝過(guò)程離不開(kāi)裝配夾具和焊裝夾具。焊裝夾具的種類繁多,因而提高裝配精度焊接質(zhì)量是車身制造的核心工作。在裝焊過(guò)程中,特別是對(duì)于具有基準(zhǔn)孔的部分,應(yīng)使用專用夾具或樣板來(lái)確定車身的形狀、尺寸和相互位置,以保證裝配精度。一個(gè)完整的轎車裝夾定位點(diǎn)達(dá) 1700~2500 個(gè),焊點(diǎn)多達(dá) 3000~4000 個(gè)。其中夾具的定位部分需用車身產(chǎn)品的 CAD 數(shù)模進(jìn)行數(shù)控加工,使沖壓件在裝配時(shí)很好地與夾具定位面相吻合,以利于焊后的車身符合主模型。因此裝焊的質(zhì)量主要取決于沖壓件的精度、夾具精度以及操作的正確與否。
轎車車身裝配的典型特征之一是柔性薄板沖壓件多工位焊裝。沖壓件偏差和焊裝夾具是影響車身尺寸質(zhì)量的主要因素。在焊裝過(guò)程中,由于薄板剛性差、易變形,為了保證零部件之間正確的相對(duì)位置和焊接間隙,必須通過(guò)焊裝夾具將其固定。為保證白車身裝配尺寸的準(zhǔn)確性,最重要的手段就是正確的工裝定位。汽車焊裝夾具與其他夾具相比,定位單元型面復(fù)雜,精度要求高,設(shè)計(jì)制造難度大。另外,由于汽車零件尺寸大,定位單元無(wú)法做成整體結(jié)構(gòu),一般采用獨(dú)立的定位板,安裝在整體底板上。在夾具使用過(guò)程中,如果發(fā)生偏移,磨損等現(xiàn)象,將導(dǎo)致零部件扭曲變形,出現(xiàn)定位偏差,引起焊接間隙的變動(dòng),最終導(dǎo)致裝配尺寸誤差和構(gòu)件受力狀態(tài)的惡化,直接影響到白車身的質(zhì)量。焊裝夾具的功能是為了實(shí)現(xiàn)車身零件的正確匹配,工程上通常從裝配精度、縮短制造周期和可調(diào)整性等方面來(lái)評(píng)價(jià)汽車焊裝夾具設(shè)計(jì)的好壞。
(3)國(guó)內(nèi)外汽車焊裝夾具的發(fā)展現(xiàn)狀
圍繞著提高產(chǎn)品裝配精度這個(gè)主題,國(guó)內(nèi)外關(guān)于焊裝夾具設(shè)計(jì)的研究主要集中在工件定位的問(wèn)題上,即選擇最優(yōu)定位點(diǎn)數(shù)并確定他們的最佳位置,以實(shí)現(xiàn)工件正確的約束定位。另外在此基礎(chǔ)上應(yīng)考慮更多的實(shí)際因素,例如焊接偏差、工具磨損等,作為新的約束條件來(lái)進(jìn)行更深一步的研究;焊裝夾具可以按照不同的方式來(lái)進(jìn)行分類,按照設(shè)計(jì)內(nèi)容包括硬件和軟件的設(shè)計(jì),其中硬件包括定位件、夾緊機(jī)構(gòu)、導(dǎo)向裝置和夾具體。軟件包括安裝調(diào)試手冊(cè)、調(diào)整圖等;如果按照設(shè)計(jì)流程來(lái)分,又可以分為概念設(shè)計(jì)階段、結(jié)構(gòu)設(shè)計(jì)階段和詳細(xì)優(yōu)化設(shè)計(jì)階段。在汽車焊接流水線上,真正用于焊接操作的工作量?jī)H占 30%~40%,而 60%~70%的工作是輔助和裝夾。焊裝夾具的技術(shù)水平往往代表著車身制造工藝水平,在現(xiàn)代制造業(yè)中, 夾具已成為保證產(chǎn)品質(zhì)量、實(shí)行全面質(zhì)量管理的重要手段, 在新產(chǎn)品的研制過(guò)程中, 夾具對(duì)縮短研制周期起著重要作用。夾具的標(biāo)準(zhǔn)化、精密化和柔性化是夾具發(fā)展的主要趨勢(shì), 也是實(shí)現(xiàn)產(chǎn)品更新?lián)Q代和老產(chǎn)品改造的需要。
目前,在汽車制造業(yè)中,車身制造質(zhì)量最好的是日本,其次是德國(guó)和美國(guó),與他們相比,我國(guó)在這方面存在著較大差距,而工裝設(shè)計(jì)制造水平不高是其中重要的原因。因此提高工裝設(shè)計(jì)與制造水平特別是焊裝夾具設(shè)計(jì)與制造水平是急需解決的問(wèn)題。
2.選題目的和意義
汽車焊裝夾具多用于焊接薄板,對(duì)于薄板沖壓件,夾緊力作用點(diǎn)要作用在支承點(diǎn)上,只有對(duì)剛性很好的工件才允許作用在幾個(gè)支承點(diǎn)所組成的平面內(nèi),以免夾緊力使工件彎曲或脫離定位基準(zhǔn)。夾緊力主要用于保持工件裝配的相對(duì)位置,克服工件的彈性變形,使其與定位支承或?qū)щ婋姌O貼合,對(duì)于 1.2mm 厚度以下的鋼板,貼合間隙不大于 0.8mm,每個(gè)夾緊點(diǎn)的夾緊力一般在 300-750N 范圍內(nèi);對(duì)于 1.5-2.5mm 之間的沖壓件,貼合間隙不大于 1.5mm,每個(gè)夾緊點(diǎn)的夾緊力在500-3000N 范圍內(nèi)。因裝夾是在焊裝夾具上完成的,所以?shī)A具在整個(gè)焊接流程中起著重要作用。在焊接過(guò)程中,合理的夾具結(jié)構(gòu),有利于合理安排流水線生產(chǎn),便于平衡工位時(shí)間,降低非生產(chǎn)用時(shí)。對(duì)具有多種車型的企業(yè),如能科學(xué)地考慮共用或混合型夾具,還有利于建造混合型流水線,提高生產(chǎn)效率。
汽車焊裝夾具是對(duì)車身沖壓零件進(jìn)行裝配焊接的專用工藝裝置,是汽車制造過(guò)程中直接影響產(chǎn)量、質(zhì)量的關(guān)鍵設(shè)備。合理的設(shè)計(jì)焊裝夾具是保證焊接質(zhì)量、提高勞動(dòng)生產(chǎn)率、減輕工人勞動(dòng)強(qiáng)度、降低車身制造成本的根本途徑。汽車焊裝夾具可以保證和提高汽車產(chǎn)品質(zhì)量,提高勞動(dòng)生產(chǎn)率,提高裝焊自動(dòng)化程度。因此汽車焊裝夾具設(shè)計(jì)水平的提高成為一個(gè)提高汽車制造業(yè)水平的有效途徑,受到國(guó)內(nèi)外汽車行業(yè)的的廣泛關(guān)注。保證焊件質(zhì)量,生產(chǎn)效率高,使用安全可靠,制造成本低等這些要求,在夾具設(shè)計(jì)時(shí)應(yīng)盡可能的促其實(shí)現(xiàn),實(shí)際上這些要求已經(jīng)成為評(píng)定夾具設(shè)計(jì)優(yōu)劣的標(biāo)準(zhǔn)??偠灾?,汽車裝焊夾具在汽車制造技術(shù)中處著舉足輕重的地位,因此設(shè)計(jì)出合理而先進(jìn)的焊裝夾具對(duì)汽車工業(yè)的發(fā)展有著實(shí)際的意義。
二、設(shè)計(jì)(論文)的基本內(nèi)容、擬解決的主要問(wèn)題
1.設(shè)計(jì)(論文)的基本內(nèi)容
(1)選題的背景、目的及意義;(2)焊裝夾具設(shè)計(jì)方法步驟研究;(3)轎車前門內(nèi)板焊裝工藝分析;(4)焊裝夾具的夾緊位置及定位方式;(5)焊裝夾具結(jié)構(gòu)設(shè)計(jì);(6)CAD繪制夾具圖紙。
2.擬解決的主要問(wèn)題
(1)焊接工藝的分析;
(2)工件定位夾緊方式的確定;
(3)夾具單元的布置方案。
三、技術(shù)路線(研究方法)
分析任務(wù)書和設(shè)計(jì)資料
轎車前門內(nèi)板焊裝工藝分析
夾具設(shè)計(jì)的技術(shù)條件
車門的材料
裝配焊接夾具的設(shè)計(jì)要求
焊點(diǎn)布置原則
結(jié)構(gòu)開(kāi)敞性
裝配焊接夾具的分類
焊接接頭型式
精度合理性
夾具的設(shè)計(jì)基準(zhǔn)
完成設(shè)計(jì)說(shuō)明書
定位元件及夾緊元件
基板
旋轉(zhuǎn)及翻轉(zhuǎn)機(jī)構(gòu)
完成裝配圖和零件圖
四、進(jìn)度安排
(1)知識(shí)準(zhǔn)備、調(diào)研、收集資料、完成開(kāi)題報(bào)告 第1~2周(2.28~3.11)
(2)整理資料、提出問(wèn)題、撰寫設(shè)計(jì)說(shuō)明書草稿、轎車前門焊裝工藝分析 第3~5周(3.14~4.1)
(3)理論聯(lián)系實(shí)際、分析問(wèn)題、解決問(wèn)題,分析焊裝夾具的夾緊位置及定位方式,焊裝夾具結(jié)構(gòu)設(shè)計(jì),CAD繪制夾具裝配草圖等部分設(shè)計(jì)內(nèi)容,中期檢查 第6~8周(4.4~4.22)
(4)改進(jìn)完成設(shè)計(jì),改進(jìn)完成設(shè)計(jì)說(shuō)明書,指導(dǎo)教師審核,學(xué)生修改 第9~12周(4.25~5.20)
(5)評(píng)閱教師評(píng)閱、學(xué)生修改 第13周(5.23~5.27)
(6)畢業(yè)設(shè)計(jì)預(yù)答辯 第14周(5.30~6.3)
(7)畢業(yè)設(shè)計(jì)修改 第15~16周(6.6~6.17)
(8)畢業(yè)設(shè)計(jì)答辯 第17周(6.20~6.24)
五、參考文獻(xiàn)
[1]楊握銓.汽車裝焊技術(shù)及夾具設(shè)計(jì).北京理工大學(xué)出版社,1996.
[18]雷玉成,于治水.焊接成型技術(shù).化學(xué)工業(yè)出版社,2004.
[19]張迪妮.先進(jìn)制造技術(shù)[M]. 北京大學(xué)出版社,2006.
[3]王政,劉萍.焊接工裝夾具及變位機(jī)械圖冊(cè).北京:機(jī)械工業(yè)出版社,2006.
[4]黃天澤.黃金陵主編,汽車車身結(jié)構(gòu)與設(shè)計(jì).北京:機(jī)械工業(yè)出版社,2005.
[5]宋曉琳.汽車車身制造工藝學(xué). 北京理工大學(xué)出版社,2006.
[6]成大先主編.機(jī)械設(shè)計(jì)手冊(cè),第五版,第一卷,北京:化學(xué)工業(yè)出版社,2008.
[7]聞邦椿主編.機(jī)械設(shè)計(jì)手冊(cè),第五版,第一卷,北京:機(jī)械工業(yè)出版社,2010.
[8]胡敏.轎車車體裝偏差研究方法綜述[J]. 汽車與配件, 2007, (34) _2 .
[9]史豐榮,韓華偉,周維華等.焊裝夾具方案設(shè)計(jì)智能CAD技術(shù)研究 [J] .中國(guó)工程機(jī)械學(xué)報(bào), 2010,08 (2) .
[10] 莫澤文,劉俊華,池源等.柔性焊裝夾具的設(shè)計(jì)及制造 [A] . 2008年中國(guó)汽車工程學(xué)會(huì)年會(huì)論文集[C] .2008 .
[12]姚春玲,張俊華.汽車車身焊裝夾具的三維設(shè)計(jì).制造也自動(dòng)化,2009,7(31).
[13]呂毅,周華.汽車焊接拼臺(tái)上的氣路系統(tǒng)設(shè)計(jì)及管路布置淺談 [J].裝備制造技術(shù),2008,(3) _4.
[14]徐杰,雷剛.轎車車門焊點(diǎn)布置優(yōu)化設(shè)計(jì)及仿真分析[A].重慶工學(xué)院學(xué)報(bào),2009,23(11).
[15]林忠欽.汽車車身制造質(zhì)量控制技術(shù)[M].北京:機(jī)械工業(yè)出版社,2005.
[16]席升印.基于實(shí)例的車身總拼柔性?shī)A具方案設(shè)計(jì)研究[碩士學(xué)位論文].上海;上海交通大學(xué),2008.
[16]汪文芳.轎車車身尺寸控制與夾具工藝設(shè)計(jì)分析[碩士學(xué)位論文].武漢;武漢理工大學(xué),2010.
[17]佟靜.RPS 理論在車門上的應(yīng)用[碩士學(xué)位論文].吉林;吉林大學(xué),2003.
[2] 王毅,楊建國(guó)等.可重構(gòu)新型汽車車身焊接夾具設(shè)計(jì) [J] .機(jī)械設(shè)計(jì)與制造,2008,(9) _2.
[20]Ceglarek, D., W. Huang, S. Zhou, Y. Ding, R. Kumar, and Y. Zhou., "Time-Based Competition in Multistage Manufacturing: Stream-of-Variation Analysis (SOVA) Methodology—Review." InternationalJournal of Flexible Manufacturing Systems ,2004 ,16: 11~44.
六、備注
指導(dǎo)教師意見(jiàn):
簽字: 年 月 日
附 錄
附錄A 英文文獻(xiàn)
On Welding-Installation Fixtures Design of Sheet Stamping
Abstract: Due to forming error and compliance of stamp-ing, the fixture design of sheet stamping assembly is different from the fixture design of common machining component. In recent years, the new principles and algorithms of fixture design of sheet stamping have been developed. In the paper, the concept of shape closure and force closure, screw theory were firstly introduced. Secondly, the deterministic locating and total fixturing conditions were derived. Thirdly, an “N-2-1”locating principle and optimal design method for sheet stamping were described. Finally, the varia-tional method of robust fixture configuration design for 3-D workpieces was discussed. It can be predicated that the locating error can be reduced by this method.
Key Words: Fixture; Sheet Stamping; Optimal Design; Ro-Bust Design
Due to its high productivity and material utilization, stamping is widely used in automobiles, aircraft, and various household appliances manufacturing industry. The welding assembly of stamping becomes the key process of those products manufacturing, because welding fixture not only affects the performance of productivity, but also is directly related to the quality of the product. Statistics from the U.S. auto industry show that 72% of the body manufacturing errors are from the position error of welding fixture, so how to effectively reduce and control the positioning error is essential to improve the welding quality. Sheet stamping assembly is significantly different from general machining, which not only meets the common requirements of precise positioning, but also gives full consideration to the easy deformation of sheet metal parts and stamping manufacturing characteristics of large deviations to adapt the products’ quality requirements. Over the last decade, many scholars working in the design of sheet stamping assembly have proposed design theories and methods of some new sheet stamping assembly, and achieved remarkable results. At first, this paper introduces the research progress of fixture design, and then systematically elaborates the N-2-1 locating principle of fixture and the methods of optimal design and robust design, finally makes the conclusion.
Manufacturing process (such as machining, welding, assembly and testing, etc.), the fixture is used in three-dimensional positioning and clamping device. The central problem of fixture design is to choose the optimal positioning points and determine their best position to achieve the determine constraints positioning of work piece. If the work piece can be full restriction depending on the geometry of contact area will, we called it "shape closed"; If it also have to be fully bound with friction, we called it "force closure." Generally, shape closure stresses dynamic analysis, but force closure focuses on the work piece of static stability. In 1885, Reuleaux first studied the mechanism of two-dimensional objects’ shape closure, and proved that the formation of two-dimensional objects’ shape closure need four anchor points [2]. After that Somoff proved the formation of three-dimensional objects’ shape closure need seven anchor points. In 1978, Lakshminarayana [3] further proved the formation of three-dimensional objects’ shape closure need at least seven anchor points in the perspective of static equilibrium using algebraic theory In 1988, Nguyen researched the mechanism of the machine hand’s force closure [4], and in 1989 Asada and Kitagawa [5] researched the machine hand’s shape closure which used for convex and concave parts Generally six positioning principles requires clamping force to make work piece fully constrained, so usually it is force closure.
Over the last decade, the "spiral theory” widely used in fixture design, which describes the three-dimensional motion as translating along one direction and rotating around this axis. Originally spiral theory proposed by Ball [6], and developed by literature [7] and [8]. According to spiral theory, literature [9] studied seven different types of finger contact, and suggested using finger-like shape to completely fix objects. Literature [10] using the extended spiral theory analyzed that rigid body’s full or part restriction exist frictional clamp. Literature [11] proposed mathematical theory of fixture’s automatic layout for prismatic work pieces. Literature [12] discussed the ability of different fixtures position contact preventing work pieces from spiral movement, and proposed a restrict method of work piece movement for the fixture design. Using small spiral model literature [13] discussed the positioning errors of fixture impact work pieces’ geometry accuracy. Literature [14] researched surface contact and friction problems in the analysis of fixture restriction. Considering dynamic constraints, completely clamping, and tool path errors, literature [15] developed fixture design and analysis software. It can be said that spiral theory of fixture design has been used for determining position, full clamping, contact type, and friction problems and achieved remarkable results.
Lots of literatures focus on the fixture design of rigid pieces, but the fixture design of flexible sheet pieces is rarely involved, especially considering the deformation of the work piece under processing loads is almost none. In fact, as in the aviation industry and the automotive industry, the deformation of sheet may result in serious bias. For easily deformed sheet, positioning fixture not only has basic functions that limiting rigid body motion, but also must be able to limit excessive deformation of the work piece. The research that earlier considering the rigidity of work pieces or fixture positing cell will be found in the literature [16] based on the experimental results they studied fixture stiffness and wear’s effects on the size accuracy. Literature [17] proposed a finite element model of the fixture system for flexible positioning fixture, and the power in process of processing can be seen as the force acting on the node. Based on this model, you can calculate the deformation of the work piece, the clamping force, stress distribution and friction between the work piece and fixture positioning unit’s contact points can be calculated by Coulomb's law. Although by considering the deformation of the work piece and the finite element analysis this area have been promoted, but it has neither proposed any specific positing principle, nor proposed positioning scheme for flexible sheet. In addition, this model does not combine the finite element analysis results of the work piece with the fixture design; it is more than the analysis of the work piece other than fixture design. Literature [18] proposed a analysis method of sheet fixture positing, they studied the fixture positioning system using the case and flat three-point and four-point to posit, so the fixture layout must make the stress in the work pieces below the yield stress. However, this method does not solve the essential problem of sheet fixture, because reducing deformation is the key to the positioning of sheet. Based on literature [17], literature [19] continued further study, that using the finite element modeling to choose fixture layout makes the deformation minimum in the first base-level. To determine the optimal fixture layout, using quasi-Newton optimization algorithm makes the deformation squares on the finite element mesh of the key nodes minimum. Design variables are the three anchor points on the first base required by "3-2-1" principle.
Sheet stamping assembly fixtures are widely used in automobiles, aircraft and household appliances industries, whose design quality directly affects the entire product manufacturing deviations. Due to sheet metal stamping’s characteristic of flexibility and manufacturing variations, the principle of traditional fixture design can not meet the design requirements, although the research of fixture design is already quite mature and the positioning principle of rigid part and the "spiral theory" has been in-depth study. "N-2-1" Location principle, for the characteristic of easy deformation on the horizontal of Sheet Metal Stamping, presents that when the number of anchor points is more than 3 in the first base surface, position effect depends not only on the number of anchor points, but also on the arrangement of the anchor points. Apart from that, it proposes the finite element analysis and the design of nonlinear programming method of the anchor, which provides theoretical basis and design methods for the design of sheet welding fixture. Because of the larger manufacture size deviation of sheet metal parts and the remarkable effect of the choice of anchor position for position deviation, robust fixture design can significantly improve the positioning error. Therefore, during the design of sheet welding fixture, implementing the "N-2-1" location principle and robust design method is extremely important. It has been proved to have a multiplier effect.
References
[1] Li B, Tang H, Yang X,et al.Quality Design of Fixture Planning for Sheet Metal Assembly [ J ].International Journal of Advanced Manufacturing Technology,2007,32 (7-8):690-697.
[2] Ceglarek D, Shi J. Dimensional Variation Reduction for Automotive Body Assembly [J].Manufacturing Review, 1995,8(2):139-154.
[3] Ceglarek D, Shi J. Fixture Failure Diagnosis for Autobody Assembly Using Pattern Recognition[J].ASME Journal of Engineering Industry,1996,118(1):55-66.
[4] Apley D, Shi J. Diagnosis of Multiple Fixture Faults in Panel Assembly[J].ASME Journal of Manufacturing Science and Engineering,1998,120(4):793-801.
[5] Chang M, Gossard D C. Computational Method forDiagnosis of Variation-related Assembly Problems [ J ]. International Journal of Production Research,1998,36 (11):2985-2995.
[6] Liu Y, Hu S. Assembly Fixture Fault Diagnosis Using Designated Component Analysis [ J].ASME Journal of Manufacturing Science and Engine ering,2005,127(2): 358-368.
[7] Khan A, Ceglarek D, Shi J,et al.Sensor Optimization for Fault Diagnosis in Single Fixture Systems: a Methodology [ J ].ASME Journal of Manufacturing Science and Engineering,1999,121(1):109-117.
[8] Djurdjanovic D, Ni J. Stream of Variation Based Analysis and Synthesis of Measurement Schemes in Multi-station Machining Systems [ C ]. Proceedings of the ASME International Mechamical Engineering Congress and Exposition, New York,2001,12:297-304.
[9] Ding Y, Kim P, Ceglarek D,et al.Optimal Sensor Distribution for Variation Diagnosis for Multi-station Assembly Processes[J].IEEE Transactions of Robotics and
Automation,2003,19(4):543-556.
[10] Camelio J A, Hu S. Sensor Placement for Effective Diagnosis of Multiple Faults in Fixturing of Compliant Parts [J].ASME Journal of Manufacturing Science andEngineering,2005,127(1):68-74.
[11] Li B, Yang J, Ding H. A Rapid Location and State Memory Fixture System for Arbitrarily Part[J].Journal of Donghua University,2000,17(3):27-31.
[12] Wang Q, Yang J, Li B. Application and Realization of Rapid Searching Technology in the RL&SM Universal Fixture System[J].Journal of Donghua University,2002, 19(3):19-22.
[13] Wang Y, Li B, Yang J. Investigation on Dimensional Error Compensation for Single Sheet Metal Assembly Station[C]. Proceedings of ICMEM, Wuxi, China,2007:699-703.
[14] Cai W, Hu S, Yuan J. Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations[J].ASME Journalof Manufacturing Science and Engineering,1996,118(3): 318-324. 367Journal of Donghua University (Eng. Ed.) Vol.26, No.4(2009)
附錄B 文獻(xiàn)翻譯
薄板沖壓件焊裝夾具設(shè)計(jì)方法
摘 要:由于薄板沖壓件的易變形性和制造誤差特征,薄板焊裝夾具設(shè)計(jì)顯著區(qū)別于普通機(jī)械加工工件定位夾具。本文首先介紹了夾具設(shè)計(jì)的形閉合與力閉合概念、螺旋理論的發(fā)展,給出了確切定位和完全夾緊條件;然后,重點(diǎn)闡述了面向薄板沖壓件焊裝夾具設(shè)計(jì)的“N-2-1”定位原理和夾具的優(yōu)化設(shè)計(jì)方法;最后分析了夾具的穩(wěn)健性設(shè)計(jì)方法??梢灶A(yù)料,采用該方法可有效地減少和控制定位誤差的影響。
關(guān)鍵詞:夾具;薄板沖壓件;優(yōu)化設(shè)計(jì);穩(wěn)健設(shè)計(jì)
沖壓加工以其較高的生產(chǎn)率和材料利用率,廣泛應(yīng)用于汽車、飛機(jī)和各種家用電器制造工業(yè),沖壓件的焊接裝配成為上述產(chǎn)品制造的關(guān)鍵工序,焊裝夾具的性能不僅影響到生產(chǎn)率,而且直接關(guān)系到產(chǎn)品的質(zhì)量。美國(guó)汽車工業(yè)的統(tǒng)計(jì)表明[1],72%的車身制造誤差源于焊裝夾具定位誤差,因此如何有效地減少和控制定位誤差的影響,對(duì)提高焊裝質(zhì)量至關(guān)重要。薄板焊裝夾具與通用的機(jī)加工夾具存在顯著的差別,它不僅要滿足精確定位的共性要求,還要充分考慮薄板沖壓件的易變形性和沖壓制造偏差較大的特征,以適應(yīng)于產(chǎn)品的高質(zhì)量要求。近十幾年來(lái),許多學(xué)者在薄板焊裝夾具的設(shè)計(jì)上開(kāi)展了大量工作,提出了一些新型的薄板沖壓件焊裝夾具的設(shè)計(jì)理論和方法,取得了顯著效果。本文首先介紹夾具設(shè)計(jì)方法的研究進(jìn)展,然后系統(tǒng)地闡述夾具的N-2-1定位原理、優(yōu)化設(shè)計(jì)及魯棒性設(shè)計(jì)方法,最后給出本文的結(jié)論。
制造過(guò)程(如加工、焊接、裝配和檢測(cè)等)中,夾具是用于在三維空間定位和夾緊工件的設(shè)備。夾具設(shè)計(jì)的中心問(wèn)題就是選擇最優(yōu)定位點(diǎn)數(shù)并確定它們的最佳位置,以實(shí)現(xiàn)工件的確定約束定位。如果工件依靠接觸區(qū)域幾何形狀便可完全約束,稱為“形閉合”;如果還必須借助摩擦才能完全約束,則稱為“力閉合”。通常形狀閉合強(qiáng)調(diào)動(dòng)態(tài)分析,而力閉合則研究工件的靜態(tài)穩(wěn)定。1885年,Reuleaux首先研究了二維工件的形閉合機(jī)制,證明了形成二維物體的形閉合必需四個(gè)定位點(diǎn)[2]。之后,Somoff證明三維物體的形閉合需要七個(gè)定位點(diǎn),1978年,Lakshminarayana[3]從靜態(tài)平衡角度利用代數(shù)理論進(jìn)一步證明了三維工件的形閉合至少需要七個(gè)點(diǎn)。1988年,Nguyen研究了機(jī)器手力閉合機(jī)制[4],而Asada和Kitagawa[5]于1989年研究了用于凸形和凹形工件的機(jī)器手的形閉合。通常的六點(diǎn)定位原理一般地需要夾緊力將工件完全約束,因此常常是力閉合。
近十幾年來(lái),“螺旋理論”廣泛流行于夾具設(shè)計(jì)中,螺旋理論將三維工件的三維空間運(yùn)動(dòng)描述為沿某一方向的平移和繞這一軸線的轉(zhuǎn)動(dòng)。最初由Ball[6]提出,并得到文獻(xiàn)[7]和文獻(xiàn)[8]的發(fā)展。根據(jù)螺旋理論,文獻(xiàn)[9]研究了七種不同類型的指狀接觸,并建議用指狀外形去完全固定夾緊物體。文獻(xiàn)[10]利用擴(kuò)展的螺旋理論就剛體的全部或局部約束分析了有摩擦夾緊。文獻(xiàn)[11]提出了用于棱柱形工件的加工夾具自動(dòng)布置的數(shù)學(xué)理論。文獻(xiàn)[12]討論了各夾具定位接觸阻止工件相互螺旋運(yùn)動(dòng)的能力,提出了一種用于夾具設(shè)計(jì)的工件運(yùn)動(dòng)約束方法。文獻(xiàn)[13]利用小螺旋模型考慮了夾具定位誤差對(duì)工件幾何精度的影響。文獻(xiàn)[14]在夾具約束分析中研究了表面接觸和摩擦問(wèn)題。文獻(xiàn)[15]開(kāi)發(fā)出了考慮動(dòng)態(tài)約束、完全夾緊和刀具路徑偏差的夾具設(shè)計(jì)和分析軟件。可以說(shuō),夾具設(shè)計(jì)的螺旋理論已經(jīng)用于處理確定定位和完全夾緊問(wèn)題、定位質(zhì)量、接觸類型和摩擦等問(wèn)題,并取得了明顯成績(jī)。
大量的文獻(xiàn)集中論述了剛性件的夾具設(shè)計(jì),但關(guān)于薄板柔性件的夾具設(shè)計(jì)研究很少涉及,特別是考慮加工載荷作用下工件變形的夾具設(shè)計(jì)的研究幾乎沒(méi)有。實(shí)際上,象在航空工業(yè)和汽車工業(yè),薄板變形可能導(dǎo)致嚴(yán)重的尺寸偏差。對(duì)于易變形薄板,定位夾具除了具備限制零件剛體運(yùn)動(dòng)的基本功能外,還必須能夠限制過(guò)多的工件變形。較早考慮工件或夾具定位單元?jiǎng)傂缘难芯恳?jiàn)于文獻(xiàn) [16],他們根據(jù)實(shí)驗(yàn)結(jié)果研究了夾具剛度和磨損對(duì)尺寸精度的影響。文獻(xiàn)[17]提出了一種用于柔性定位夾具的夾具系統(tǒng)分析的有限元模型,加工過(guò)程中的加工力可看作是作用于節(jié)點(diǎn)的力?;谠撃P?可以計(jì)算出工件變形、夾緊力和應(yīng)力分布,可運(yùn)用庫(kù)侖摩擦定律去計(jì)算工件與夾具定位單元間接觸處的摩擦力。雖然通過(guò)考慮工件變形和有限元分析推動(dòng)了這一領(lǐng)域,但它既沒(méi)有提出任何一種具體的定位原理,也沒(méi)有為具有柔性的薄板提出一種定位方案。此外,這種模型并沒(méi)有將工件的有限元分析結(jié)果同夾具設(shè)計(jì)規(guī)范聯(lián)系起來(lái),它更多的是工件的分析而不是夾具設(shè)計(jì)。文獻(xiàn)[18]提出了一種薄板夾具定位分析的方法,他們研究了用于平板和殼體的三點(diǎn)和四點(diǎn)夾具定位系統(tǒng),夾具布置必須使得工件中的應(yīng)力低于材料的屈服應(yīng)力。然而,這種方法并沒(méi)有解決薄板夾具的本質(zhì)問(wèn)題,因?yàn)闇p小變形是薄板件定位的關(guān)鍵所在。文獻(xiàn)[19]在文獻(xiàn) [17]的基礎(chǔ)上進(jìn)行了更深入的研究,利用有限元建模選擇使得工件在第一基準(zhǔn)面法向的變形最小的夾具定位布置。為確定最佳夾具定位布置,利用擬牛頓優(yōu)化算法使有限元網(wǎng)格上的關(guān)鍵節(jié)點(diǎn)的變形的平方和最小。設(shè)計(jì)變量是“3-2-1”定位原理所要求的第一基準(zhǔn)面上的三個(gè)定位點(diǎn)。
薄板沖壓件焊裝夾具廣泛應(yīng)用于汽車、飛機(jī)及家用電器等工業(yè),焊裝夾具的設(shè)計(jì)質(zhì)量直接影響到整個(gè)產(chǎn)品的制造偏差。由于薄板沖壓件的柔性和制造偏差特征,傳統(tǒng)的夾具設(shè)計(jì)原理不能滿足薄板沖壓件的設(shè)計(jì)要求,盡管夾具設(shè)計(jì)研究已經(jīng)相當(dāng)成熟,剛性零件的定位原理和“螺旋理論”得到了深入研究?!癗-2-1”定位原理針對(duì)薄板沖壓件在橫向上的易變形特征,提出了在第一基面上的定位點(diǎn)數(shù)目大于3,定位效果不僅取決于定位點(diǎn)的數(shù)目,而且取決于定位點(diǎn)的布置形式,并提出了采用有限元分析與非線性規(guī)劃的定位點(diǎn)設(shè)計(jì)方法。為薄板沖壓件焊裝夾具的設(shè)計(jì)提供了理論基礎(chǔ)和設(shè)計(jì)方法。由于薄板沖壓件的制造尺寸偏差較大,定位點(diǎn)位置的選擇對(duì)定位偏差的影響更明顯,夾具的穩(wěn)健設(shè)計(jì)可顯著地改善定位誤差。因此,在薄板焊裝夾具設(shè)計(jì)過(guò)程中,貫徹“N-2-1”定位原理和穩(wěn)健性設(shè)計(jì)方法是極為重要的,實(shí)踐證明,可以收到事半功倍的效果。
8
收藏