湖南省2019年中考數(shù)學(xué)總復(fù)習(xí) 專題訓(xùn)練08 二次函數(shù)與幾何圖形綜合題練習(xí)
《湖南省2019年中考數(shù)學(xué)總復(fù)習(xí) 專題訓(xùn)練08 二次函數(shù)與幾何圖形綜合題練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《湖南省2019年中考數(shù)學(xué)總復(fù)習(xí) 專題訓(xùn)練08 二次函數(shù)與幾何圖形綜合題練習(xí)(17頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、二次函數(shù)與幾何圖形綜合題 08 二次函數(shù)與幾何圖形綜合題 1.[2018·賀州] 如圖ZT8-1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c交x軸于A,B兩點(diǎn)(A在B的左側(cè)),且OA=3,OB=1,與y軸交于點(diǎn)C(0,3),拋物線的頂點(diǎn)坐標(biāo)為D(-1,4). (1)求A,B兩點(diǎn)的坐標(biāo). (2)求拋物線的表達(dá)式. (3)過點(diǎn)D作直線DE∥y軸,交x軸于點(diǎn)E,點(diǎn)P是拋物線上B,D兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B,D兩點(diǎn)重合),PA,PB與直線DE分別交于點(diǎn)F,G,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由. 圖ZT8-1
2、 2.[2018·連云港] 如圖ZT8-2①,圖形ABCD是由兩個(gè)二次函數(shù)y1=kx2+m(k<0)與y2=ax2+b(a>0)的部分圖象圍成的封閉圖形,已知A(1,0),B(0,1),D(0,-3). (1)直接寫出這兩個(gè)二次函數(shù)的表達(dá)式; (2)判斷圖形ABCD是否存在內(nèi)接正方形(正方形的四個(gè)頂點(diǎn)在圖形ABCD上),并說明理由; (3)如圖②,連接BC,CD,AD,在坐標(biāo)平面內(nèi),求使得△BDC與△ADE相似(其中點(diǎn)C與點(diǎn)E是對(duì)應(yīng)頂點(diǎn))的點(diǎn)E的坐標(biāo). 圖ZT8-2 3.[2018·益陽] 如圖ZT8-3,已知拋物線y=12x2-32x-n(n
3、>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C. (1)如圖①,若△ABC為直角三角形,求n的值; (2)如圖①,在(1)的條件下,點(diǎn)P在拋物線上,點(diǎn)Q在拋物線的對(duì)稱軸上,若以BC為邊,以點(diǎn)B,C,P,Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo); (3)如圖②,過點(diǎn)A作直線BC的平行線交拋物線于另一點(diǎn)D,交y軸于點(diǎn)E,若AE∶ED=1∶4,求n的值. 圖ZT8-3 4.[2018·齊齊哈爾] 綜合與探究: 如圖ZT8-4①所示,直線y=x+c與x軸交于點(diǎn)A(-4,0),與y軸交于點(diǎn)C,拋物線y=-x2+bx+c經(jīng)過點(diǎn)A,C. (1)求拋物線的表達(dá)式;
4、 (2)點(diǎn)E在拋物線的對(duì)稱軸上,求CE+OE的最小值; (3)如圖②所示,M是線段OA上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M且垂直于x軸的直線與直線AC和拋物線分別交于點(diǎn)P,N. ①若以C,P,N為頂點(diǎn)的三角形與△APM相似,則△CPN的面積為 ;? ②若點(diǎn)P恰好是線段MN的中點(diǎn),點(diǎn)F是直線AC上一個(gè)動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)D,使以點(diǎn)D,F,P,M為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)D的坐標(biāo);若不存在,請說明理由. 圖ZT8-4 5.[2018·濰坊] 如圖ZT8-5①,拋物線y1=ax2-12x+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C0,34,拋物線y1的頂點(diǎn)為G,GM
5、⊥x軸于點(diǎn)M.將拋物線y1平移后得到頂點(diǎn)為B且對(duì)稱軸為直線l的拋物線y2. (1)求拋物線y2的解析式. (2)如圖②,在直線l上是否存在點(diǎn)T,使△TAC是等腰三角形?若存在,請求出所有點(diǎn)T的坐標(biāo);若不存在,請說明理由. (3)點(diǎn)P為拋物線y1上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交拋物線y2于點(diǎn)Q,點(diǎn)Q關(guān)于直線l的對(duì)稱點(diǎn)為R.若以P,Q,R為頂點(diǎn)的三角形與△AMG全等,求直線PR的解析式. 圖ZT8-5 6.[2018·樂山] 如圖ZT8-6,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C0,-43,OA=1,OB=4,直線l過點(diǎn)A,交y軸于點(diǎn)
6、D,交拋物線于點(diǎn)E,且滿足tan∠OAD=34. (1)求拋物線的解析式. (2)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿x軸正方向以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),沿射線AE以每秒1個(gè)單位長度的速度向點(diǎn)E運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)Q也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒. ①在P,Q的運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得△ADC與△PQA相似?若存在,求出t的值;若不存在,請說明理由. ②在P,Q的運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得△APQ與△CAQ的面積之和最大?若存在,求出t的值;若不存在,請說明理由. 圖ZT8-6 參考答案
7、1.解:(1)由拋物線y=ax2+bx+c交x軸于A,B兩點(diǎn)(A在B的左側(cè)),且OA=3,OB=1,得點(diǎn)A的坐標(biāo)為(-3,0),點(diǎn)B的坐標(biāo)為(1,0). (2)設(shè)拋物線的表達(dá)式為y=a(x+3)(x-1). 把點(diǎn)C的坐標(biāo)代入函數(shù)表達(dá)式,得a(0+3)(0-1)=3. 解得a=-1. 故拋物線的表達(dá)式為y=-(x+3)(x-1)=-x2-2x+3. (3)EF+EG=8(或EF+EG是定值).理由如下:過點(diǎn)P作PQ∥y軸,交x軸于Q,如圖.設(shè)P(t,-t2-2t+3),則PQ=-t2-2t+3,AQ=3+t,QB=1-t. ∵PQ∥EF,∴△AEF∽△AQP.∴EFPQ=AEAQ,
8、 ∴EF=PQ·AEAQ=(-t2-2t+3)×23+t=23+t×(-t2-2t+3)=2(1-t). ∵PQ∥EG,∴△BEG∽△BQP. ∴EGPQ=BEBQ. ∴EG=PQ·BEBQ=(-t2-2t+3)×21-t=2(t+3). ∴EF+EG=2(1-t)+2(t+3)=8. 2.解:(1)∵二次函數(shù)y1=kx2+m的圖象經(jīng)過點(diǎn)A,B, ∴k+m=0,m=1.解得k=-1,m=1. ∴二次函數(shù)y1=kx2+m的解析式為:y1=-x2+1. ∵二次函數(shù)y2=ax2+b的圖象經(jīng)過點(diǎn)A,D, ∴a+b=0,b=-3.解得a=3,b=-3. ∴二次函數(shù)y2=ax2+b
9、的解析式為y2=3x2-3. (2)設(shè)M(x,-x2+1)為第一象限內(nèi)的圖形ABCD上一點(diǎn),M'(x,3x2-3)為第四象限內(nèi)的圖形ABCD上一點(diǎn), ∴MM'=(1-x2)-(3x2-3)=4-4x2. 由拋物線的對(duì)稱性知,若有內(nèi)接正方形,則2x=4-4x2, 即2x2+x-2=0. 解得x=-1+174或x=-1-174(舍), ∵0<-1+174<1, ∴存在內(nèi)接正方形,此時(shí)其邊長為-1+172. (3)在Rt△AOD中,OA=1,OD=3, ∴AD=OA2+OD2=10,同理CD=10. 在Rt△BOC中,OB=OC=1,∴BC=OC2+OB2=2. ①如圖①,當(dāng)△
10、DBC∽△DAE時(shí),∵∠CDB=∠ADO, ∴在y軸上存在一點(diǎn)E滿足條件. 由DBDA=DCDE,得410=10DE. ∴DE=52.∵D(0,-3),∴E0,-12. 由對(duì)稱性知,在直線DA右側(cè)還存在一點(diǎn)E'使得△DBC∽△DAE', 連接EE',交DA于點(diǎn)F,作E'M⊥OD,垂足為M,連接E'D. ① ∵E,E'關(guān)于DA對(duì)稱, ∴DF垂直平分EE'.∴△DEF∽△DAO. ∴DEDA=DFDO=EFAO,即2.510=DF3=EF1. ∴DF=3104,EF=104. ∵S△DEE'=12DE·E'M=EF·DF=158, ∴E'M=32. 又DE'=DE=5
11、2,在Rt△DE'M中,DM=DE'2-E'M2=2,∴OM=1,得E'32,-1. 所以,使得△DBC∽△DAE的點(diǎn)E的坐標(biāo)為0,-12或32,-1. ②如圖②,當(dāng)△DBC∽△ADE時(shí),有∠BDC=∠DAE, DBAD=DCAE,即410=10AE,得AE=52. 當(dāng)E在直線DA左側(cè)時(shí),設(shè)AE交y軸于點(diǎn)P,作EQ⊥AC,垂足為Q. ② ∵∠BDC=∠DAE=∠ODA, ∴PD=PA.設(shè)PD=x, 則PO=3-x,PA=x. 在Rt△AOP中,由PA2=OA2+OP2,得x2=(3-x)2+1. 解得x=53. ∴PA=53,PO=43. ∵AE=52,∴PE=56
12、. ∵OP∥EQ,∴APPE=AOOQ. ∴OQ=12.又OPQE=APAE=23, ∴QE=2.∴E-12,-2. 當(dāng)E'在直線DA右側(cè)時(shí), ∵∠DAE'=∠BDC, 又∠BDC=∠BDA, ∴∠BDA=∠DAE'. ∴AE'∥OD.∴E'1,-52. ∴使得△DBC∽△ADE的點(diǎn)E的坐標(biāo)為-12,-2或1,-52. 綜上,使得△BDC與△ADE相似(其中點(diǎn)C與點(diǎn)E是對(duì)應(yīng)頂點(diǎn))的點(diǎn)E有4個(gè),其坐標(biāo)為0,-12或32,-1或-12,-2或1,-52. 3.解:(1)若△ABC為直角三角形,則△AOC∽△COB.∴OAOC=OCOB,即OC2=OA·OB. 由拋物線y=1
13、2x2-32x-n(n>0),可得 OC=n,OA·OB=2n. ∴n2=2n.解得n1=2,n2=0(舍去). ∴n=2. (2)由(1)可知,拋物線的對(duì)稱軸為直線x=32,拋物線的解析式為y=12x2-32x-2. 令y=0,得12x2-32x-2=0,解得x1=-1,x2=4, ∴A(-1,0),B(4,0). 設(shè)點(diǎn)Pm,12m2-32m-2. 當(dāng)直線PQ∥BC,點(diǎn)P在點(diǎn)Q的左側(cè)時(shí)(如圖①所示), 當(dāng)△BOC平移到△QNP的位置時(shí),四邊形PQBC為平行四邊形, 此時(shí)NQ=OB,即32-m=4,m=-52, 12m2-32m-2=398, 此時(shí)點(diǎn)P的坐標(biāo)為-52,3
14、98; 當(dāng)點(diǎn)P在點(diǎn)Q的右側(cè)時(shí)(如圖①所示), 同理可得m-32=4,m=112, 12m2-32m-2=398,此時(shí)點(diǎn)P的坐標(biāo)為112,398. 綜上所述,滿足條件的點(diǎn)P的坐標(biāo)為-52,398,112,398. (3)如圖②,過點(diǎn)D作DF⊥x軸,垂足為F, 則AO∶OF=AE∶ED=1∶4. 設(shè)A(a,0),B(b,0), 則AO=-a,OF=-4a. ∵AD∥BC, ∴∠OBC=∠DAO. ∵∠BOC=∠AFD=90°, ∴△BOC∽△AFD. ∴OCDF=BOAF, 即nDF=b-4a-a. ∴nDF=b-5a. 由題意,得ab=-2n.∴nb=-a
15、2. ∴DF=-5a·nb=-5a·-a2=52a2. ∵點(diǎn)A,D在拋物線上, ∴12a2-32a-n=0,12×16a2-32×(-4a)-n=52a2. 解得a=-32,n=278. ∴n的值為278. 4.解:(1)將A(-4,0)代入y=x+c,得c=4.∴點(diǎn)C的坐標(biāo)為(0,4). 將(-4,0)和(0,4)代入y=-x2+bx+c,得b=-3. ∴拋物線的解析式為y=-x2-3x+4. (2)如圖所示,作點(diǎn)C關(guān)于拋物線的對(duì)稱軸直線l的對(duì)稱點(diǎn)C',連接OC'交直線l于點(diǎn)E,連接CE,此時(shí)CE+OE的值最小,且CE+OE=OC'. 拋物線的對(duì)稱軸為直線x=--32
16、×(-1)=-32, 則C'C=3,在Rt△C'CO中, 由勾股定理,得OC'=CC'2+OC2=5. ∴CE+OE的最小值為5. (3)①由題意易知△APM為等腰直角三角形. 設(shè)M(a,0),則N(a,-a2-3a+4),P(a,a+4). 當(dāng)△AMP∽△CNP時(shí),AMCN=MPNP, 得4+a-a=a+4-a2-3a+4-(a+4), 解得a=-4(舍去)或a=-3或a=0(舍去). ∴CN=3,PN=3. ∴△CPN的面積為12·CN·PN=92. 當(dāng)△AMP∽△NCP時(shí),AMNC=APNP, 得a+4(-a2-3a+4-4)2+(-a)2=2(4+a)-a2-3
17、a+4-(a+4), 解得a=0(舍去)或a=-2或a=-4(舍去). ∴CN=CP=22. ∴△CPN的面積為12·CN·PC=4. 故答案為92或4. ②存在.D1-2+322,322,D2-2-322,-322, D3(-4,3),D412,32. 理由如下: 當(dāng)點(diǎn)P是線段MN的中點(diǎn)時(shí),-a2-3a+4=2(a+4), 解得a=-4(舍去)或a=-1. ∴M(-1,0),P(-1,3),N(-1,6). 設(shè)F(f,f+4),過點(diǎn)M作AC的平行線,易知此直線的解析式為y=x+1. 易知PM=3,當(dāng)PM為菱形的邊時(shí),作PF=PM,過F作FD∥PM,交直線y=x+1于點(diǎn)
18、D, ∴D(f,f+1). ∴32=2(f+1)2,解得f=-2±322. 則D1-2+322,322,D2-2-322,-322. ∵PM=AM=3, ∴當(dāng)點(diǎn)F與點(diǎn)A重合時(shí),過點(diǎn)F作DF∥PM(D在x軸上方),且DF=PM, 連接DP,可得出四邊形DPMF為菱形. ∴點(diǎn)D的坐標(biāo)為(-4,3). 當(dāng)PM為菱形的對(duì)角線時(shí),作PM的垂直平分線, 交直線AC于點(diǎn)F,作點(diǎn)F關(guān)于PM的對(duì)稱點(diǎn)D, 連接MF,MD,PD,此時(shí)四邊形DMFP為菱形. 將y=32代入直線AC的解析式可得x=-52,∴點(diǎn)F的坐標(biāo)為-52,32. ∵直線PM的解析式為x=-1, ∴點(diǎn)D的坐標(biāo)為12,32.
19、 綜上所述,滿足條件的點(diǎn)為D1-2+322,322, D2-2-322,-322,D3(-4,3),D412,32. 5.解:(1)將B(1,0)和C0,34代入拋物線y1=ax2-12x+c,得 a-12+c=0,c=34.解得a=-14,c=34. 所以拋物線的解析式為y1=-14x2-12x+34. 由題意可知平移后拋物線y2的頂點(diǎn)為B(1,0), 故拋物線y2的解析式為y2=-14(x-1)2, 即y2=-14x2+12x-14. (2)存在. 令y1=0,解得x=-3或x=1. 由題意知B(1,0),故A(-3,0). 設(shè)T(1,t),又C0,34, 所以A
20、C2=32+342=15316, AT2=(1+3)2+t2=t2+16, CT2=12+t-342=t2-32t+2516. ①若AC=AT,則t2+16=15316,方程無解,故此時(shí)不存在; ②若AC=CT,則t2-32t+2516=15316, 解得t=3±1374, 此時(shí)點(diǎn)T的坐標(biāo)為1,3+1374或1,3-1374; ③若AT=CT,則t2-32t+2516=t2+16,解得t=-778,此時(shí)點(diǎn)T的坐標(biāo)為1,-778. 故點(diǎn)T的坐標(biāo)為1,3+1374或1,3-1374或1,-778. (3)由題意知G(-1,1),則AM=2,GM=1. 若△PQR與△AMG全等,
21、則PQ=1,QR=2或PQ=2,QR=1. 分類一:若QR=2,由拋物線y2的對(duì)稱軸為直線x=1,得點(diǎn)Q的橫坐標(biāo)為0或2. ①當(dāng)x=0時(shí),y1=34,y2=-14, 此時(shí)PQ=34--14=1,滿足題意, 則P0,34,R2,-14, 直線PR的解析式為y=-12x+34. ②當(dāng)x=2時(shí),y1=-54,y2=-14, 此時(shí)PQ=-14--54=1,滿足題意, 則P2,-54,R0,-14, 直線PR的解析式為y=-12x-14. 分類二:若QR=1,由拋物線y2的對(duì)稱軸為直線x=1,得點(diǎn)Q的橫坐標(biāo)為12或32. ①當(dāng)x=12時(shí),y1=716,y2=-116, 此時(shí)PQ=
22、716--116=12≠2,不滿足題意. ②當(dāng)x=32時(shí),y1=-916,y2=-116, 此時(shí)PQ=-116--916=12≠2,不滿足題意. 綜上所述,滿足題意的直線PR的解析式為y=-12x+34或y=-12x-14. 6.解:(1)∵OA=1,OB=4,∴A(1,0),B(-4,0). 設(shè)拋物線的解析式為y=a(x+4)(x-1). ∵C0,-43在拋物線上, ∴-43=a×4×(-1).解得a=13. ∴拋物線的解析式為y=13(x+4)(x-1),即y=13x2+x-43. (2)①存在t,使得△ADC與△PQA相似.其理由如下: 在Rt△AOC中,OA=1,O
23、C=43, 則AC=53,tan∠ACO=OAOC=34. 又∵tan∠OAD=34, ∴∠OAD=∠ACO. 在Rt△AOD中,tan∠OAD=34,OA=1, ∴OD=34. ∴CD=43-34=712. 在△AQP中,AP=AB-PB=5-2t,AQ=t. 由∠PAQ=∠ACD,要使△ADC與△PQA相似,只需APAQ=CDAC或APAQ=ACCD, 則有5-2t1t1=71253或5-2t2t2=53712, 解得t1=10047,t2=3534. ∵t1<2.5,t2<2.5, ∴存在t=10047或3534,使得△ADC與△PQA相似. ②存在t,使得△A
24、PQ與△CAQ的面積之和最大,其理由如下: 作PF⊥AQ于點(diǎn)F,CN⊥AQ于點(diǎn)N,如圖所示. 在Rt△APF中, ∵tan∠PAF=34,∴sin∠PAF=35. ∴PF=AP·sin∠PAF=35(5-2t). 在Rt△AOD中,由AD2=OD2+OA2,得AD=54. 在△ADC中,由S△ADC=12AD·CN=12CD·OA, 得CN=CD·OAAD=712×154=715. ∴S△APQ+S△CAQ=12AQ(PF+CN)=12t35(5-2t)+715=-35t-1392+169135. ∵0<139<52, ∴當(dāng)t=139時(shí),△APQ與△CAQ的面積之和最大. 17
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強(qiáng)對(duì)文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見問題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說話方式
- 汽車銷售績效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對(duì)成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩