智能掃地機(jī)器人設(shè)計(jì)與制作【含CAD圖紙+文檔全套】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
任 務(wù) 書
1.畢業(yè)設(shè)計(jì)的背景:
掃地機(jī)器人,又稱自動(dòng)打掃機(jī)、智能吸塵、機(jī)器人吸塵器等,是智能家用電器的一種,能憑借一定的人工智能,自動(dòng)在房間內(nèi)完成地板清理工作。一般采用刷掃和真空方式,將地面雜物先吸納進(jìn)入自身的垃圾收納盒,從而完成地面清理的功能。本課題要求學(xué)生設(shè)計(jì)一款智能型掃地機(jī)器人,并動(dòng)手制作出實(shí)物。
2.畢業(yè)設(shè)計(jì)(論文)的內(nèi)容和要求:
內(nèi)容要求:1、設(shè)計(jì)并制作一種智能掃地機(jī)器人,要求具有多種清掃模式,防碰撞,自動(dòng)充電,智能爬坡等功能。產(chǎn)品尺寸350x90mm,電壓輸入范圍 AC220-240V,功率 24W,行走速度 19cm/秒,工作時(shí)間 60-80分鐘,灰塵盒容積350ml,真空度0.53Kpa,風(fēng)量 0.48m3/Min,遙控距離大于8米。
工作量要求: 1、外文文獻(xiàn)翻譯4000字左右(與課題相關(guān)); 2、設(shè)計(jì)說明書的字?jǐn)?shù)不少于20000字; 3、畢業(yè)答辯圖紙總量不少于2張A0圖紙,其中包括計(jì)算機(jī)輔助繪圖的工作量; 4、參考文獻(xiàn)不少于15篇(至少2篇外文文獻(xiàn))。
3.主要參考文獻(xiàn):
[1] 張毅剛.單片機(jī)原理及應(yīng)用.高等教育出版社,2007
[2] 熊詩波.機(jī)械工程測試技術(shù)基礎(chǔ)(第三版).機(jī)械工業(yè)出版社,2008年
[3] 王伯雄.工程測試技術(shù).清華大學(xué)出版社,2013年
[4] 張國雄.測控電路(第四版).機(jī)械工業(yè)出版社.2014年
[5] 張毅剛.單片機(jī)原理及接口技術(shù)(C51編程).人民郵電出版社,2011年
[6] 邱宣懷.機(jī)械設(shè)計(jì)手冊(cè)第四版.高等教育出版社,2006年
[7] 成大先.機(jī)械設(shè)計(jì)手冊(cè).化工工業(yè)出版社,1993年
4.畢業(yè)設(shè)計(jì)(論文)進(jìn)度計(jì)劃(以周為單位):
1-2周 查詢相關(guān)文獻(xiàn),收集資料,翻譯外文資料、確定系統(tǒng)總體設(shè)計(jì)方案,并遞交開題報(bào)告。
3~4周 設(shè)計(jì)并完善各子系統(tǒng)組成方案
5~9周 設(shè)計(jì)機(jī)體機(jī)構(gòu)、設(shè)計(jì)各子系統(tǒng)硬件電路,傳感器與關(guān)鍵元器件選型,完成原理圖設(shè)計(jì)、PCB板設(shè)計(jì);
10周 對(duì)軟件系統(tǒng)進(jìn)行設(shè)計(jì);
11~12周 修改并完善圖紙、編寫設(shè)計(jì)說明書。
13周 完成答辯。
教研室審查意見:
室主任簽名: 年 月 日
學(xué)院審查意見:
教學(xué)院長簽名: 年 月 日
機(jī)器人技術(shù)和自動(dòng)系統(tǒng)
機(jī)器人在近海石油和天然氣工業(yè)中的應(yīng)用
第二部分回顧
Amit Shukla ?, Hamad Karki
石油學(xué)院,阿布扎比,阿拉伯聯(lián)合酋長國
亮點(diǎn)
l 我們報(bào)告技術(shù)審查的機(jī)器人用于近海石油和天然氣工業(yè)。
l 現(xiàn)場調(diào)研、生產(chǎn)結(jié)構(gòu)和檢驗(yàn)等需要來自的遙控操作裝置幫助。
l 對(duì)于水下檢驗(yàn)、焊接和操縱離岸地區(qū)至關(guān)重要。
l 遙感,預(yù)防和清理漏油事件需要機(jī)器人監(jiān)控。
l 安全和生產(chǎn)率傳送機(jī)器人是這個(gè)行業(yè)的未來。
文章歷史:網(wǎng)上2015年9月25日
摘要
隨著城市化和工業(yè)化的世界日益增長的人口,石油和天然氣需求也在不斷增長。全球巨型油田的產(chǎn)量在不斷下降,而這種情況正創(chuàng)造對(duì)尋找新的常規(guī)和非常規(guī)化石儲(chǔ)備的需要。隨著主要陸上和淺灘離岸的陡峭損耗,化石燃料的油田新搜索向深水和超深海上油田邁進(jìn)。 顯然,新的資源位于極端的難以達(dá)到環(huán)境條件中。艱難的海上石油勘探、開發(fā)和生產(chǎn)對(duì)人類健康、安全與自然環(huán)境有著許多嚴(yán)峻挑戰(zhàn),因此,需要復(fù)雜的技術(shù)創(chuàng)新來支持日益增長的能源需求。
在海上石油平臺(tái)上爆發(fā)的最大深水地平線石油泄漏事故是個(gè)明顯的例子,人類不能冒險(xiǎn)讓類似事件再次發(fā)生。因此,推進(jìn)鉆井系統(tǒng)的開發(fā),更準(zhǔn)確、智能的檢查機(jī)制,快速響應(yīng)不幸事故和有效的損害控制系統(tǒng)是使未來更安全所需要的。機(jī)器人成功地在太空和制造行業(yè)實(shí)現(xiàn),是一個(gè)機(jī)器人實(shí)現(xiàn)援助的重要例子。在可預(yù)見的未來自動(dòng)化是實(shí)現(xiàn)石油安全采集和安全生產(chǎn)的唯一選擇。操控?zé)o人鉆井和生產(chǎn)平臺(tái)、遠(yuǎn)程操作車輛機(jī)械,智能水下機(jī)器人,水下焊接、焊接機(jī)器人等雙脫殼船舶和水下機(jī)械手是機(jī)器人技術(shù)了的關(guān)鍵所在,在現(xiàn)代這種技術(shù)平穩(wěn)地使近海鉆井平臺(tái)從淺水到深海??紤]產(chǎn)品的敏感性和環(huán)境中的苦難, 大部分的這些技術(shù)屬于半自治的范疇,人類操作員在整個(gè)操作過程中不斷地提供認(rèn)知援助以實(shí)現(xiàn)機(jī)器人的安全執(zhí)行。本文總結(jié)了目前在海上石油和天然氣設(shè)施中使用的關(guān)鍵機(jī)器人技術(shù)
關(guān)鍵詞:機(jī)器人;自動(dòng)化;水下機(jī)械手;水下焊接;生產(chǎn)結(jié)構(gòu);無損檢測;遙控操作裝置;自主水下載具;無線傳感器網(wǎng)絡(luò)
2015年愛思唯爾保留所有權(quán)
1介紹
為緊跟工業(yè)化的步伐,能源的需求量在不斷增加,就需要新型化工燃料。為了滿足現(xiàn)在的能源挑戰(zhàn),非常規(guī)能源的效率低下或是無關(guān)緊要的,因此我們目前能源需求的80%左右是由化石燃料其中50% - -60%是來自石油和天然氣[1,2]。交通運(yùn)輸行業(yè)消耗最多的化石燃料,因?yàn)槟軌虼婺茉慈剂系碾姵?、太陽能電池能量密度相比非常低。隨著單一資源快速枯竭,在更多的極端條件下如深水,炎熱的沙漠和北極區(qū)等發(fā)現(xiàn)了新油田石油產(chǎn)品[3]。隨著陸上生產(chǎn)的減少、海上原油生產(chǎn)已從1940年的每天1百萬桶石油當(dāng)量到2009年的每天24百萬桶石油當(dāng)量 [4]。隨著供應(yīng)的減少和要求的增加,現(xiàn)在石油和天然氣公司也嘗試新的非常規(guī)石油儲(chǔ)備如重油、致密氣、頁巖氣、煤層氣等?,F(xiàn)代經(jīng)濟(jì)對(duì)原油的成本、質(zhì)量和數(shù)量高度敏感,因?yàn)樗梢郧宄磻?yīng)原油價(jià)格下跌導(dǎo)致世界其他非石油商品價(jià)格下降[5 - 7]。這原油價(jià)格下跌是由于主要通過水力壓裂法汽油產(chǎn)量的增加,主要發(fā)生在美國[7]。盡管水力壓裂法會(huì)造成嚴(yán)重的地下水污染,,噪聲污染,空氣質(zhì)量退化和未來地震等的潛在危險(xiǎn)。但是相對(duì)的論點(diǎn)是水力壓裂技術(shù)能夠迅速得到發(fā)展并成熟應(yīng)對(duì)上述挑戰(zhàn)??傮w本質(zhì)是要求更高的能量不能被忽略,因此促進(jìn)更好地管理現(xiàn)有資源和安全技術(shù)的探索未來困難的資源是成功的關(guān)鍵。
大量報(bào)道表明墨西哥灣漏油事件[8]導(dǎo)致了無數(shù)的海洋物種的嚴(yán)重危機(jī),許多公司員工失去了生命,當(dāng)?shù)貪O民的生活被永久破壞和操作公司英國石油(BP)卷入了許多法律訴訟[9]。調(diào)查人員發(fā)現(xiàn),有一個(gè)無視警告信號(hào)的循環(huán)模式,未能分享信息,普遍缺乏對(duì)其中涉及的風(fēng)險(xiǎn)[10]。這事故對(duì)石油和天然氣工業(yè)是一個(gè)巨大的挫折,同時(shí)時(shí)人類已知?dú)v史上最大的環(huán)境危機(jī)而幾十年來嚴(yán)重影響無數(shù)的物種。但這一不幸事件不僅在政府、學(xué)術(shù)界和環(huán)保人士也在對(duì)未來戰(zhàn)略安全勘探和生產(chǎn)化石燃料的石油和天然氣行業(yè)的主要參與者間引發(fā)了非常嚴(yán)重的爭論[11]。深水鉆井勘探鉆井非常具有挑戰(zhàn)性,因?yàn)殂@孔工作是在冷,深而極高壓環(huán)境之下。在深地平線石油泄漏的情況下,海底天然氣的極限壓力在剛建成的混泥土中心產(chǎn)生了一條裂縫。天然氣通過縫隙進(jìn)入氣體鉆井立管,然后進(jìn)入工作區(qū)并點(diǎn)燃,導(dǎo)致11人死亡,17人受傷。工人們?cè)谂せ钽@井防噴器(防噴器)時(shí)試圖關(guān)閉礦井但不幸失敗了。這種安全機(jī)制被設(shè)計(jì)來在失敗的情況下關(guān)閉中石油,但在最后一分鐘的危機(jī)時(shí)刻并沒有成功。在這次事故中大約2億加侖的石油泄漏在深水區(qū),這對(duì)海洋生命造成了可怕的污染[12]。將近290萬公升海水化學(xué)分散劑被倒進(jìn)被石油和天然氣污染的海水中 (13、14)。這起石油泄漏事件變得更加嚴(yán)重,因?yàn)樾孤┌l(fā)生在1511米深的深水區(qū)域,而且,沒有現(xiàn)成的技術(shù)能夠立即控制這樣一個(gè)深地下水平的泄漏。先進(jìn)的工業(yè)遙控車(ROV)從希林機(jī)器人、水下機(jī)器人(AUV)和UAV(無人機(jī))被用來做海底調(diào)查和遙感地下潛油,為石油泄漏[13,15]污染做出精確分析。在他們的內(nèi)部報(bào)告本身BP了傷害和巨大的努力參與整體清洗操作說明'' 2010最高程度的一瞥,救災(zāi)工作涉及約48000人的動(dòng)員,約6500艘,約2500英里的部署協(xié)調(diào)(1350萬英尺)的繁榮包含或吸收油。截至2014年12月底,英國石油已經(jīng)花費(fèi)了超過140億美元和人員投入7000萬多名人員小時(shí)響應(yīng)和清理活動(dòng)。2014年4月美國海岸警衛(wèi)隊(duì)結(jié)束剩余的活躍在“深水地平線”地區(qū)清理行動(dòng)(16、17)。繼歐洲的幾個(gè)可怕石油泄漏危機(jī)后,歐洲委員會(huì)已經(jīng)資助幾個(gè)研究項(xiàng)目,主要研究智能機(jī)器人技術(shù)以創(chuàng)新石油泄漏管理(18、19)。
從那之后,大多數(shù)大型陸上油田產(chǎn)量下降,總體供應(yīng)的原油從陸上儲(chǔ)備現(xiàn)在趨于平穩(wěn)(4,21), 現(xiàn)在所需的推力與供應(yīng)鏈的飆升需求來自離岸產(chǎn)品。目前幾乎世界上30%的石油產(chǎn)量是來自開發(fā)海上油田和深水儲(chǔ)量也貢獻(xiàn)了9%左右,如圖1所示(4,20)。自2002年以來, 現(xiàn)在由于飽和淺水油井連近海石油產(chǎn)量也在下降。石油儲(chǔ)量發(fā)現(xiàn)深度d≤400 mfrom海平面稱為淺水,400 < d≤1500米時(shí)成為深水, 1500 < d m時(shí)稱為下層深海。目前境外生產(chǎn)總數(shù)的近80%來自于淺水石油儲(chǔ)備。第一個(gè)海上鉆井可以追溯到1869年,海上鉆井裝置設(shè)計(jì)的第一個(gè)專利是T.F.羅蘭,但首個(gè)商業(yè)開發(fā)油田從1896年加州海岸開始。這些早期的海上油田非常淺,距離海平面只有幾英尺深。深水生產(chǎn)從1990年開始成為商業(yè)上可施行的生產(chǎn),其產(chǎn)量為1.5 Mboe / d,現(xiàn)在產(chǎn)量擴(kuò)大到三倍。本著同樣的精神尋找新的石油儲(chǔ)量,從2005年起石油公司也開始探索深海地區(qū)的海洋水。境外生產(chǎn)對(duì)世界經(jīng)濟(jì)至關(guān)重要的作用,但總體離岸生產(chǎn)也顯示從2002年開始平約23Moeb / d,主要是由于收縮淺水儲(chǔ)備和近期無法找到新的大離岸外匯儲(chǔ)備。同時(shí)在像深處和冰凍的北極區(qū)極端環(huán)境條件處發(fā)現(xiàn)了許多新近海油氣田。
敏感的產(chǎn)品加上嚴(yán)酷的工作環(huán)境對(duì)目前的安全管理體系造成了嚴(yán)酷挑戰(zhàn),因此,連續(xù)的石油和天然氣設(shè)施檢查和維護(hù)是至關(guān)重要的。雖然從深水區(qū)域中提取石油和天然氣是一個(gè)令人印象深刻的工程壯舉,但同樣也需要足夠的技術(shù),以防止事故發(fā)生,確保人類和海洋生活的安全。而通過先進(jìn)技術(shù)采集的石油和天然氣的需求量使得油田采集的經(jīng)濟(jì)可行性變的更加困難,但為了防止事故的發(fā)生,技術(shù)成本似乎變得已經(jīng)很難承擔(dān),深水地平線漏油案已經(jīng)證明了這一點(diǎn)。人類的局限性及其在極端環(huán)境中的操作能力是糟糕的,因此,機(jī)器人援助在這種情況下將會(huì)非常有價(jià)值[22]。在這種人機(jī)合作模型中,大多數(shù)的認(rèn)知能力決定將來自人類操作員而訪問關(guān)鍵對(duì)象,數(shù)據(jù)收集、檢查、處理和反饋則來自機(jī)器人裝置配備合適的傳感器。因此,可以說,石油和天然氣設(shè)施的整體自動(dòng)化可以進(jìn)一步劃分為許多具體的子問題,例如人機(jī)界面等(1、8、第23 - 25),數(shù)據(jù)信號(hào)傳輸(每股26到29),資源分配和任務(wù)調(diào)度[30-33],[34-36]導(dǎo)航技術(shù),移動(dòng)機(jī)器人的定位(37-41), 在水下環(huán)境的本地化的水下機(jī)器人(42-51),檢驗(yàn)技術(shù)(52-58)和遙操作[59]等??焖僭鲩L的石油和天然氣工業(yè)面臨的挑戰(zhàn),如較低的回收率,探索非傳統(tǒng)的儲(chǔ)備,在極端環(huán)境條件下的操作,以及最后的整體商業(yè)模式盈利能力將提高自動(dòng)化水平高提上議程[61]。成功處理上述挑戰(zhàn),需要最好使用來自從其他行業(yè)解決方案的已經(jīng)可用的機(jī)器人解決方案, 這種方案混合了新的激進(jìn)的創(chuàng)新,特別是在石油和天然氣行業(yè),如智能鉆井平臺(tái),智能檢查和操作技術(shù)和生產(chǎn)自動(dòng)化操作。有幾個(gè)正在進(jìn)行的項(xiàng)目已經(jīng)表明了在這個(gè)方向上的進(jìn)展,例如一個(gè)挪威的公司命名的機(jī)器人鉆井系統(tǒng),已經(jīng)簽署了一項(xiàng)聯(lián)合研究計(jì)劃與美國航空航天局開發(fā)的智能鉆井技術(shù)(11)。艾波比集團(tuán)還開發(fā)了一個(gè)基于遙操作跟蹤從一個(gè)單一的平臺(tái),是一個(gè)集成所有生產(chǎn)設(shè)備關(guān)鍵參數(shù)的遠(yuǎn)程監(jiān)控系統(tǒng)。他分布在植物的不同部位上。考慮到產(chǎn)品的敏感性和他們的生產(chǎn)環(huán)境,目前大多數(shù)被建議或者使用的的機(jī)器人技術(shù)在不久的將來仍在業(yè)務(wù)助理的過程中進(jìn)行檢查、操作、維修(IMR)和救援任務(wù)?;谶@樣的遙操作技術(shù)已經(jīng)在各個(gè)領(lǐng)域產(chǎn)生令人振奮的結(jié)果,如海上石油和天然氣的勘探22,63–[ 65 ],[ 66,68 ]–太空探索、軍事[ 69 ],[水]下70,71勘探,醫(yī)療應(yīng)用[72,73],娛樂[ 74 ],和[ 75,76危險(xiǎn)環(huán)境。
2. 海上機(jī)器人技術(shù)
四分之三的地球表面覆蓋著水,海洋占主要部分,這儲(chǔ)藏這大量的石油,也被稱為海上油田。首先在海上石油和天然氣的商業(yè)勘探開始在墨西哥灣成功安裝--淺海水域的路易斯安那 [79]。然后,隨著在陸上和淺海油田上使用改進(jìn)的技術(shù)和消耗的化石燃料資源,石油和天然氣的搜索已經(jīng)從淺水(小于1000英尺深的水從海平面)到深水(超過1000英尺)[80]。
淺水中最初的油氣勘探系統(tǒng)是由陸上設(shè)施同一種設(shè)備組成的。這些設(shè)備的區(qū)別在于密封的容器中絕緣性不同。從手工操作的油田的淺水區(qū)的遠(yuǎn)程操作到深水油田的操作主要有兩個(gè)主要的障礙,一是推進(jìn)技術(shù)支持和二是整個(gè)項(xiàng)目的經(jīng)濟(jì)可行性。但隨著石油產(chǎn)品價(jià)格的增加,目前機(jī)器人技術(shù)的改善在這一歷史性的轉(zhuǎn)變成為可能?,F(xiàn)在有兩種主要的動(dòng)機(jī)來實(shí)現(xiàn)石油和天然氣領(lǐng)域的自動(dòng)化;第一個(gè)動(dòng)機(jī)是提高工作效率的同時(shí)提高成本效率,第二也是最重要的動(dòng)機(jī)是有效地應(yīng)對(duì)安全挑戰(zhàn)的必要性[80、81]。新的深水油田超出了常規(guī)潛水員所能到達(dá)的范圍,現(xiàn)在各國政府實(shí)施了更嚴(yán)格的法律法規(guī),為實(shí)現(xiàn)海上設(shè)施的連續(xù)檢查和維護(hù),減少災(zāi)難性故障提供了可能性[82]。因此,使用遠(yuǎn)程控制的機(jī)器能夠有效地執(zhí)行在深水中潛水員的工作。這種危急情況下使用這種方法是強(qiáng)制性的 [59]。遙控?zé)o人操控海上油氣設(shè)施是降低運(yùn)營資本非常有吸引力的解決方案。
Robotics and Autonomous Systems 75 (2016) 508524Contents lists available at ScienceDirectRobotics and Autonomous Systemsjournal homepage: of robotics in offshore oil and gas industryA review Part IIAmit Shukla, Hamad KarkiThe Petroleum Institute, Abu Dhabi, United Arab Emiratesh i g h l i g h t sWe present technical review of robotics used in offshore oil and gas industry.Site survey, production structure and inspection require assistance from ROV.Underwater inspection, welding and manipulation are critical areas in offshore.Remote sensing, prevention and cleaning of oil spill require robotic surveillance.For safety and productivity teleoperation robotics is the future of this industry.a r t i c l ei n f oArticle history:Available online 25 September 2015Keywords:RoboticsAutomationUnderwater manipulatorUnderwater weldingProduction structureNDTROVAUVWSNOil spilla b s t r a c tDemands for oil and gas are increasing with urbanization and industrialization of the worlds increasingpopulation. Giant oil fields are declining in their production worldwide and this situation is creatingneed for search of new conventional and non-conventional fossil reserves. With steep depletion of majoronshore and shallow-water-offshore oil fields new search of fossil fuel is moving towards deep-waterand ultra-deep water offshore fields. Obviously new reserves are located in extreme, hostile and hard-to-reach environmental conditions. Exploration, development and production of oil from such difficultoffshore fields have many serious challenges to health, safety and environment (HSE) therefore, requiresophisticated technological innovations to support increasing energy demand. Biggest oil spill accidentsin explosion of Deepwater Horizon offshore oil platform are burning example of such challenges whichhuman society cannot risk to repeat. Therefore, development of advance drilling system, more accurateand intelligent inspection mechanism, faster responsive system in cases of unfortunate incidence andefficient damage control system is need of the safer future. Successful implementation of robotics, inspace and manufacturing industry, is an critical example of how robotic assistance and automation is theonly option for safe and cost-effective production of oil in foreseeable future. Teleoperation of unmanneddrilling and production platforms, remote operated vehicles (ROVs), autonomous underwater vehicles(AUVs), under-water welding, welding robots for double hulled ships and under-water manipulator aresuch key robotic technologies which have facilitated smooth transition of offshore rigs from shallowwaters to ultra-deep waters in modern time. Considering the sensitivity of product and difficulty ofenvironment, most of these technologies fall under semi-autonomous category, where human operatoris in loop for providing cognitive assistance to the overall operation for safe execution. This papersummarizes the key robotic technologies currently used in offshore oil and gas facilities.2015 Elsevier B.V. All rights reserved.1. IntroductionWith ever increasing demands for energy to keep the pace ofindustrialization newer sources of fossil fuels are required. Non-conventional energy sources are either inefficient or insignificantCorresponding author.E-mail addresses: ashuklapi.ac.ae (A. Shukla), hkarkipi.ac.ae (H. Karki).to meet real energy challenges as of now, therefore around 80% ofour current energy demands are fulfilled by fossil fuels and out ofwhich 50%60% comes from oil and gas alone 1,2. Transporta-tion industry is the biggest consumer of fossil fuel because alterna-tive power sources fuel-cell, battery and solar cells have very lowenergy density in comparison to it. With fast depletion of easy re-sources new fields for petroleum products are found in more ex-treme conditions such as deep-water, hot deserts and arctic zoneetc. 3. With downhill onshore production, offshore crude oil pro-http:/dx.doi.org/10.1016/j.robot.2015.09.0130921-8890/2015 Elsevier B.V. All rights reserved.A. Shukla, H. Karki / Robotics and Autonomous Systems 75 (2016) 508524509duction has grown from 1 Mboe/d (million barrels of oil equivalentper day) in 1940 to nearly 24 Mboe/d in 2009 4. With shrink-ing supply and increasing demands, now oil and gas companiesare also trying for new non-conventional petroleum reserves suchas heavy oil, tight gas, shale gas and coal-bed methane etc. Mod-ern economy is highly sensitive to quality, quantity and cost ofcrudeoilasitcanbeclearlyobservedinphenomenaoffallingcrudeoil prices leading of fall in other non-oil commodity prices worldwide 57. This fall in crude oil prices came due to increasingproduction of gasoline, by hydraulic fracturing, mostly in USA 7.Though hydraulic fracturing poses serious challenges to environ-ment by ground water pollution, noise pollution, degradation ofair-qualityandpotentialdangeroffutureearthquakes.Butcounterargumentisthatfrackingtechnologyisswiftlygettingadvanceandmatured to deal with above mentioned challenges. Overall essenceis that demand for higher energy cannot be ignored, thereforeadvancement of technology for better management of existing re-sources and safer exploration of future difficult resources hold thekey for success.Most widely reported and studied tragedy of Deep Horizon oilspill in the Gulf of Mexico 8 has created severe crisis for count-less sea species, dozens of company employees lost lives, liveli-hood of local fishermen are destroyed permanently and operatingcompany British Petroleum (BP) has got embroiled in to many lawsuits 9. Investigators have found that there was a recurring pat-tern of ignoring warning signals, failure to share information, anda general lack of appreciation for the risks involved 10. This acci-dentwasahugesetbackforoilandgasindustrybeingbiggestenvi-ronmental crisis of known human history while severely affectingcountlesslivesfordecades.Butthisunfortunateeventhasalsotrig-gered the most serious debate not only in governments, academiaand environmentalists but also among the major players of the oiland gas industry for the future strategy of safer exploration andproductionofthefossilfuels11.Deepwaterdrillingexplorationisvery challenging because drilling takes place at deep, cold, distantandextremelyhigh-pressureenvironment.AndinthecaseofDeepHorizon oil spill, extreme pressure of natural gas under sea-bedhad created a crack in recently built concrete core, through whichgas traveled to rigs riser and then to the platform, where it ignited,killing 11 and injuring 17 workers. Attempt to close the well failedmiserably when efforts to activate rigs blowout preventer (BOP), asafety mechanism designed in the cases of failure to close the wellfrom which oil was drawn, did not succeed at the last minutes ofcrisis. In this accident almost 200 million gallons of oil was spilledin deep water creating terrible pollution for marine lives 12.Almost 2.9 million liter of dispersant chemicals were poured insea water to treat water which was polluted by oil and gas plumes13,14. This oil spill became even more critical because leak hap-pened in deep water at the depth of 1511 m and for which therewasnoreadilyavailabletechnologytocontrolthesuchspillimme-diately at such a deep subsurface level. Advanced industrial ROVs(Remotely Operated Vehicles) from Schilling Robotics, AUVs (Au-tonomous Underwater Vehicles) and UAVs (Unmanned Aerial Ve-hicles)wereemployedtodosea-floorsurveyandremotesensingofsubsurface submerged oil respectively for accurate analysis of thepollution caused by oil spill 13,15. In their internal report itselfBP has given glimpse of the extent of damage and herculean effortsinvolved in overall cleaning operations by stating that at its peakin 2010, the response effort involved the mobilization of approxi-mately48,000people,thecoordinationofapproximately6500ves-selsandthedeploymentofapproximately2500miles(13.5millionfeet) of boom to contain or absorb the oil. As at the end of Decem-ber 2014, BP has spent more than 14 billion USD and workers havedevoted more than 70 million personnel hours on response andclean-upactivities.TheUSCoastGuardendedtheremainingactiveclean-up operations in the Deepwater Horizon area of response inFig. 1. Onshore versus offshore oil production map 20.April 2014 16,17. In the wake of several terrible oil spill crisis inEurope,EuropeanCommissionhasalreadyfundedseveralresearchprojects with main objective of developing innovative intelligentrobotic technologies for oil spill management 18,19.Since, most of the giant onshore oil fields are in declining pro-duction and overall supply of crude from onshore reserves areleveled-out now 4,21, required thrust to match the soaring de-mands of supply chain is coming now from offshore productions.Currently almost 30% of the worlds oil production is coming fromdeveloping offshore field and deep-water reserves are also con-tributing around 9% as shown in Fig. 1 4,20. Since 2002 now evenoffshore oil production is also on decline due to saturation of shal-lowwateroilwells.Oilreservesfoundindepthd400mfromsealevel are called as shallow, deep-water when 400d1500 mand ultra-deep-water when 1500d m. As of now almost 80%of the total offshore production comes from shallow water oil re-serves. First offshore drilling is tracked back to as early as 1869to the first patent for offshore drilling rig design of T.F. Rowlandbut first commercially developed field started in 1896 off the coastof Summerfield, California. These early offshore fields were veryshallow only few feet deep from sea level. Deep-water productionbecame commercially feasible from year 1990 and started withproduction rate of 1.5 Mboe/d and now scaled up to three times.In a same spirit of finding new oil reserves, from year 2005onwards oil companies have also started exploring ultra-deepwater territories of sea. Contribution of offshore production iscritical for the world economy but somehow overall offshore pro-duction is also showing leveling off around 23 Moeb/d from years2002 onwards, mostly due to shrinking shallow water reservesand inability to find new big offshore reserves in recent time. Andmost of the new offshore oil and gas fields are found in extremeenvironmental conditions such as deep under and frozen arcticzones etc.Sensitivity of the product coupled with harshness of the envi-ronment now leading to critical HSE challenges, therefore, contin-uous inspection and maintenance of the oil and gas facilities areextremely important tasks. Extraction of oil and gas from deepwater conditions is an impressive engineering feat but it also re-quire equally capable technologies to prevent accidents and en-sure safety of human and marine lives. While increasing demandof oil and gas with advanced technologies have made difficult oilfields economically feasible but in case of accidents cost is catas-trophically unaffordable as clearly demonstrated in Deep Horizonoilspillcase.Humanlimitationsandtheircapacitytooperateinin-tensively extreme environment is really critical, therefore, roboticassistance in such situations will be immensely valuable 22. Insuch humanmachine cooperation model, most of the cognitiveability to take decisions will come from human operator and ac-cess to critical objects, data collection, inspection, manipulationandfeedbackcomesfromroboticdeviceequippedsuitablesensors.Therefore, it can be said that overall automation of the oil and gasfacilities can be further divided in to many specific subproblemssuch as humanmachine interface 1,8,2325, data-signal trans-mission 2629, resource allocation and task scheduling 3033,510A. Shukla, H. Karki / Robotics and Autonomous Systems 75 (2016) 508524navigation technologies 3436, localization of the mobile robotsand workspace-objects 3741, localization of AUVs in underwa-ter conditions 4251, inspection technologies 5258 and tele-operation 59 etc. Even after rightly an efficiently solving all thesesubproblemsintegrationofallthesesubsystemsisananotherchal-lenge 60.Fast growing challenges for the oil and gas industry, such aslower recovery rate, exploration of unconventional reserves, oper-ation in extreme environmental conditions and finally profitabil-ity of overall business model has put the need for raising thelevel of automation high on agenda 61. Successful handling ofthe above mentioned challenges requires best usage of alreadyavailable robotic solutions from other industries, blended withnew radical innovations especially designed for the oil and gas in-dustry such as intelligent drilling rigs, smart inspection and ma-nipulation techniques and automated operations for production.There are several ongoing projects indicating progress in this di-rection for example a Norwegian company named Robotic DrillingSystems, has signed a joint research program with NASA todevelop technology for intelligent drilling 11. ABB has also de-veloped an integrated remote monitoring system based on tele-operation to track all the critical parameters of a production plantfrom one single platform which are discretely distributed in dif-ferent parts of the plant 61. Considering the sensitivity of theproduct and their production environment most of the robotictechnology presently used or suggested to be used in near futureare still used only in a manner of operation assistant in the pro-cess of inspection, manipulation, repair (IMR) and rescue missions22,62. Such teleoperation based technology for IMR has al-ready produced exciting results in various fields, such as offshoreoil and gas explorations 22,6365, space explorations 6668,military 69, under-water exploration 70,71, medical applica-tion 72,73, entertainment 74, and hazardous environments75,76. Teleoperation, tele-manipulation, tele-robotics and tele-inspection etc. are just different categories of fundamentally sametechnology with some minor differences in over architectural ar-rangementofsystemcomponentsAgba:1995.Teleinspection(sub-classofteleoperation)isrelatedtousageofmobilerobotsequippedwith different kinds of sensors and devices 36,77 to perform theinspection and data collection 78.2. Robotics in offshore conditionsThree fourth of earths surface is covered with water, mainlyocean, have huge reservoirs of oil and gas also known as offshorefields. First commercial exploration of oil and gas in offshorefields, started with successful installation of offshore well in theGulf of Mexico, Louisiana, in shallow sea water 79. Then withimproving technology and depleting resources of fossil fuels, atboth onshore and shallow-water fields, search for oil and gas hasmoved from shallow water (less than 1000 ft from sea level) todeep water (more than 1000 ft from sea level till 10000 ft) 1,80.Initially oil exploration systems in shallow water were comprisedof same kind of devices as onshore facilities with only differenceof insulation of these equipments from water by packing themin sealed containers. Shift from manually operated oil fieldsof the shallow-waters to the remotely operated deep-water oilfields had two main roadblock, first was absence of advancetechnicalsupportandsecondwaseconomicunfeasibilityofoverallproject. But with increasing prices of the petroleum productsand improvement in available robotic technology is presentlymaking this historic transition possible. Now there are two mainsources of motivation for moving towards automatization of oiland gas field; the first motivation is to increase productivity whilesimultaneously improving cost efficiency, the second and mostimportant motivation is the necessity of effectively dealing withHSE challenges 80,81. New deep-water fields are beyond thereach of conventional divers and now governments are imposingmore stringent rules and regulations for continuous inspectionand maintenance of offshore facilities to minimize chances ofcatastrophic failure 82. Therefore, usage of remote controlledmachines,toeffectivelyperformthejobofhumandiversinsidethedeep-water, are now compulsory in such critical situations 59.Remotely controlled unmanned offshore oil and gas facilities arevery attractive solutions for reducing operational and capital costalong with improved standards of HSE 83. For example, usageof ROVs cost only one third of the day rate which is generallyassociated with divers, therefore, usage of ROVs and AUVs not onlyincrease human safety but also improve cost efficiency 84,85.Along with other benefits robots are less error prone even indemanding situations and perform more reliably than humans.Robots ability to work 24 h a day seven days a week with sameprecision, originally intended to be, makes them reliable andpowerful asset for the oil and gas industry 59,86.Theoilandgasindustrycanbedividedinthreemainstages,firstupstream,secondmidstreamandthirddownstream.Theupstreamoilsectorisaboutexploration,recoveryandproductionofcrudeoilfrom their reserves. Overall exploration and production togetheris also called as E&P sector which involves search for oil andgas reserves, drilling up exploratory well and ultimately installingsuitable production structure for the final production 87. Oncecrude oil or gas is extracted from reserves next step involvesprocessing, transportation and storage of these natural products.These tasks are parts of midstream oil sector which typicallylinks the supply of the oil industry to the demands for energycommodities 88. Finally the downstream sector involves refiningof crude oil and their distribution to different customers. Thisrefining is a very complicated process but generally involvessequence of actions like distillation, cracking, treating andreformingtogeneratefinallymoreusefulproductshavingdifferentgrades of viscosity and explosiveness 89. These products includegasoline, liquefied petroleum gas (LPG), diesel, naphtha, kerosene,fuel oils, lubricating oils, paraffin wax, asphalt, tar and petroleumcoke etc. 88. Compared to onshore, offshore environments aremore challenging and this leads to higher threat to human safetyand increased cost of production. Especially after accident of DeepHorizon oil spill, governmental regulations, for every stage ofoffshore oil and gas industry, have become more stiffer, therefore,usage of robotics has very high potential to increase productionefficiency and create safer production platforms while improvingcost efficiency.2.1. ExplorationsExploration of oil and gas mainly involve three kinds of expertanalysis, first from geologistsfor picking up particular safe basinforexploration, secondfromgeochemiststohelpidentifying rockstructures having organic fossils and third from geophysiciststo help in process of confirmation by collecting more data 90.The first phase of exploration is called as seismic study, wheredetailed mapping and high resolution acoustic data are used tomakeintelligentguessaboutlocationofthefuelreserve91.Intheprocess of onshore seismic studies, very large heavy duty vehiclescalled as vibroseis, are used to generate and send seismic wavesdeep in to the earth. These seismic waves are then reflected bydifferent layers of earth later to be recorded by geophones locatedon the earth surface. Seismic data recorded by the geophonesare used by geologists, geophysicists and reservoir engineers toregenerate the cross-section of earth to understand exactly whereoil and gas can be found. This overall process is also called asseismology. There are also some other technological tools such asmagnetometer and gravity-meter to study earths layer structureA. Shukla, H. Karki / Robotics and Autonomous Systems 75 (2016) 508524511in the search of oil and gas. But before going for setting upproduction unit, its mandatory for operators to confirm not onlyavailability of the petroleum products but also its commercialquality and quantity, to justify heavy capital cost involved in theoverallproductionprocess90.Inthiscasenewunmannedrobotictechnology, such as ROVs and AUVs, equipped with multipleadvance sensors performing task of exploration is extremelyuseful65,86.Inoffsho
收藏