2022年高考數(shù)學(xué)回歸課本 整數(shù)問題教案 舊人教版

上傳人:xt****7 文檔編號:105283766 上傳時間:2022-06-11 格式:DOC 頁數(shù):3 大?。?42.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)回歸課本 整數(shù)問題教案 舊人教版_第1頁
第1頁 / 共3頁
2022年高考數(shù)學(xué)回歸課本 整數(shù)問題教案 舊人教版_第2頁
第2頁 / 共3頁
2022年高考數(shù)學(xué)回歸課本 整數(shù)問題教案 舊人教版_第3頁
第3頁 / 共3頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2022年高考數(shù)學(xué)回歸課本 整數(shù)問題教案 舊人教版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)回歸課本 整數(shù)問題教案 舊人教版(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)回歸課本 整數(shù)問題教案 舊人教版 一、常用定義定理 1.整除:設(shè)a,b∈Z,a≠0,如果存在q∈Z使得b=aq,那么稱b可被a整除,記作a|b,且稱b是a的倍數(shù),a是b的約數(shù)。b不能被a整除,記作a b. 2.帶余數(shù)除法:設(shè)a,b是兩個給定的整數(shù),a≠0,那么,一定存在唯一一對整數(shù)q與r,滿足b=aq+r,0≤r<|a|,當(dāng)r=0時a|b。 3.輾轉(zhuǎn)相除法:設(shè)u0,u1是給定的兩個整數(shù),u1≠0,u1 u0,由2可得下面k+1個等式:u0=q0u1+u2,0

2、 … uk-2=qk-2u1+uk-1+uk,01且n為整數(shù),則,其中pj(j=1,2,…,k)是質(zhì)數(shù)(或稱素數(shù)),且在不計次序的意義下,表示是唯一的。 6.同余:設(shè)m≠0,若m|(a-b),即a-b=km,則稱a與b模同m同余,記為a≡b(modm),也稱b是a對模m的剩余。 7.完全剩余系:一組數(shù)y1,

3、y2,…,ys滿足:對任意整數(shù)a有且僅有一個yj是a對模m的剩余,即a≡yj(modm),則y1,y2,…,ys稱為模m的完全剩余系。 8.Fermat小定理:若p為素數(shù),p>a,(a,p)=1,則ap-1≡1(modp),且對任意整數(shù)a,有ap≡a(modp). 9.若(a,m)=1,則≡1(modm),(m)稱歐拉函數(shù)。 10.(歐拉函數(shù)值的計算公式)若,則(m)= 11.(孫子定理)設(shè)m1,m2,…,mk是k個兩兩互質(zhì)的正整數(shù),則同余組: x≡b1(modm1),x≡b2(modm2),…,x≡bk(modmk)有唯一解, x≡M1b1+M2b2+…+Mkbk(modM),

4、 其中M=m1m2mk;=,i=1,2,…,k;≡1(modmi),i=1,2,…,k. 二、方法與例題 1.奇偶分析法。 例1 有n個整數(shù),它們的和為0,乘積為n,(n>1),求證:4|n。 [證明] 設(shè)這n個整數(shù)為a1,a2,…,an,則a1,a2,…,an=n, ① a1+a2+…+an=0。 ② 首先n為偶數(shù),否則a1,a2,…,an均為奇數(shù),奇數(shù)個奇數(shù)的和應(yīng)為奇數(shù)且不為0,與②矛盾,所以n為偶數(shù)。所以a1,a2,…,an中必有偶數(shù),如果a1,a2,…,an中僅有一個偶數(shù),則a1,a2,…,an中還有奇數(shù)個奇數(shù),從而a1+a2+…+an也為奇數(shù)與②矛盾,所以a

5、1,a2,…,an中必有至少2個偶數(shù)。所以4|n. 2.不等分析法。 例2 試求所有的正整數(shù)n,使方程x3+y3+z3=nx2y2z2有正整數(shù)解。 解 設(shè)x,y,z為其正整數(shù)解,不妨設(shè)x≤y≤z,則由題設(shè)z2|(x3+y3),所以z2≤x3+y3,但x3≤xz2,y3≤yz2,因而z=nx2y2-≥nx2y2-(x+y),故x3+y3≥z2≥[nx2y2-(x+y)]2,所以n2x4y4≤2nx2y2(x+y)+x3+y3,所以nxy<。若x≥2,則4≤nxy<≤3,矛盾。所以x=1,所以ny<,此式當(dāng)且僅當(dāng)y≤3時成立。又z2|(x3+y3),即z2|(1+y3),所以只有y=1,

6、z=1或y=2,z=3,代入原方程得n=1或3。 3.無窮遞降法。 例3 確定并證明方程a2+b2+c2=a2b2的所有整數(shù)解。 解 首先(a,b,c)=(0,0,0)是方程的整數(shù)解,下證該方程只有這一組整數(shù)解。假設(shè)(a1,b1,c1)是方程的另一組整數(shù)解,且a1,b1,c1不全為0,不妨設(shè)a1≥0,b1≥0,c1≥0且,由≡1或0(mod4)知a1,b1,c1都是偶數(shù)(否則(mod4)),從而是 方程x2+y2+z2=2x2y2的一組整數(shù)解,且不全為0,同理可知也都是偶數(shù)為方程x2+y2+z2=24x2y2的解。這一過程可以無限進行下去,另一方面a1,b1,c1為有限的整數(shù),必存在

7、k∈N,使2k>a1,2k>b1,2k>c1,從而不是整數(shù),矛盾。所以該方程僅有一組整數(shù)解(0,0,0). 4.特殊模法。 例4 證明:存在無窮多個正整數(shù),它們不能表示成少于10個奇數(shù)的平方和。 [證明] 考慮形如n=72k+66,k∈N的正整數(shù),若,其中xi為奇數(shù),i=1,2,…,s且1≤s≤9。因為n≡2(mod8),又≡1(mod8),所以只有s=2.所以,又因為≡2或0(mod3),且3|n,所以3|x1且3|x2,所以9|n。但n=72k+66≡3(mod9),矛盾。所以n不能表示成少于10個奇數(shù)的平方和,且這樣的n有無窮多個。 5.最小數(shù)原理。 例5 證明:方程x4

8、+y4=z2沒有正整數(shù)解。 [證明] 假設(shè)原方程有一組正整數(shù)解(x0,y0,z0),并且z0是所有正整數(shù)解z中最小的。因此,,則a2-b2,=2ab,z0=a2+b2,其中(a,b)=1,a,b一奇一偶。假設(shè)a為偶數(shù),b為奇數(shù),那么(mod4),而(mod4),矛盾,所以a為奇數(shù),b為偶數(shù)。于是,由得x0=p2-q2,b=2pq,a=p2+q2(這里(p,q)=1,p>q>0,p,q為一奇一偶)。從而推得,因為p,q,p2+q2兩兩互質(zhì),因此它們必須都是某整數(shù)的平方,即p=r2,q=s2,p2+q2=t2,從而r4+s4=t2,即(r,s,t)也是原方程的解,且有t

9、a2+b2=z,這與z的最小性矛盾,故原方程無正整數(shù)解。 6.整除的應(yīng)用。 例6 求出所有的有序正整數(shù)數(shù)對(m,n),使得是整數(shù)。 解 (1)若n=1,則是整數(shù),所以m-1=1或2,所以(m,n)=(2,1),(3,1). (2)若m=1,則,所以n-1=1或2,所以(m,n)=(1,2),(1,3). (3)若m>1,n>1,因為是整數(shù),所以也是整數(shù),所以m,n是對稱的,不妨設(shè)m≥n, ⅰ)若m=n,則為整數(shù),所以n=2,m=2. ⅱ)若m>n,因為n3+1≡1(modn),mn-1≡-1(modn),所以≡-1(modn). 所以存在k∈N,使kn-1=,又kn-1=

10、所以(k-1)n<1+,所以k=1,所以n=1=,所以 所以n-1=1或2,所以(m,n)=(5,3)或(5,2). 同理當(dāng)m

11、311,所以前105個自然數(shù)的三進制至多由11個數(shù)字組成,因而T中的元素個數(shù)共有1+2+22+…+210=211-1=2047>1983(個)。這是因為T中的k位數(shù)的個數(shù)相當(dāng)于用0,1這兩個數(shù)在k-1個位置上可重復(fù)的全排列數(shù)(首位必須是1),即2k-1,k=1,2,…,11. (2)T中最大的整數(shù)是1+3+32+…+310=88573<105。 (3)T中任意三個數(shù)不組成等差排列的三個連續(xù)項。否則,設(shè)x,y,z∈T,x+z=2y,則2y必只含0和2,從而x和z必定位位相同,進而x=y=z,這顯然是矛盾的。 三、習(xí)題精選 1.試求所有正整數(shù)對(a,b),使得(ab-a2+b+1)|(ab

12、+1). 2.設(shè)a,b,c∈N+,且a2+b2-abc是不超過c+1的一個正整數(shù),求證:a2+b2-abc是一個完全平方數(shù)。 3.確定所有的正整數(shù)數(shù)對(x,y),使得x≤y,且x2+1是y的倍數(shù),y2+1是x的倍數(shù)。 4.求所有的正整數(shù)n,使得存在正整數(shù)m,(2n-1)|(m2+9). 5.求證:存在一個具有如下性質(zhì)的正整數(shù)的集合A,對于任何由無限多個素數(shù)組成的集合,存在k≥2及正整數(shù)m∈A和nA,使得m和n均為S中k個不同元素的乘積。 6.求最小的正整數(shù)n(≥4),滿足從任意n個不同的整數(shù)中能選出四個不同的數(shù)a,b,c,d使20|(a+b-c-d). 7.對于正整數(shù)a,n,定義Fn(a)=q+r,其中q,r為非負整數(shù),a=qn+r且0≤r≤n,求最大正整數(shù)A,使得存在正整數(shù)n1,n2,…,n6,對任意正整數(shù)a≤A,都有=1,并證明你的結(jié)論。 8.設(shè)x是一個n位數(shù),問:是否總存在非負整數(shù)y≤9和z使得10n+1z+10x+y是一個完全平方數(shù)?證明你的結(jié)論。 9.設(shè)a,b,c,d∈N+,且a>b>c>d,ac+bd=(b+d+a-c)(b+d-a+c)。證明:ab+cd不是素數(shù)。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!