2022年高考數(shù)學 常見題型解法歸納反饋訓練 第07講 函數(shù)的奇偶性的判斷和證明

上傳人:xt****7 文檔編號:105378185 上傳時間:2022-06-11 格式:DOC 頁數(shù):7 大?。?75.52KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學 常見題型解法歸納反饋訓練 第07講 函數(shù)的奇偶性的判斷和證明_第1頁
第1頁 / 共7頁
2022年高考數(shù)學 常見題型解法歸納反饋訓練 第07講 函數(shù)的奇偶性的判斷和證明_第2頁
第2頁 / 共7頁
2022年高考數(shù)學 常見題型解法歸納反饋訓練 第07講 函數(shù)的奇偶性的判斷和證明_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學 常見題型解法歸納反饋訓練 第07講 函數(shù)的奇偶性的判斷和證明》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學 常見題型解法歸納反饋訓練 第07講 函數(shù)的奇偶性的判斷和證明(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學 常見題型解法歸納反饋訓練 第07講 函數(shù)的奇偶性的判斷和證明 【知識要點】 一、函數(shù)的奇偶性的定義 對于函數(shù),其定義域關于原點對稱,如果恒有,那么函數(shù)為奇函數(shù);如果恒有,那么函數(shù)為偶函數(shù). 二、奇偶函數(shù)的性質 1、奇偶函數(shù)的定義域關于原點對稱;2、 偶函數(shù)的圖像關于軸對稱,奇函數(shù)的圖像關于原點對稱;3、偶函數(shù)在對稱區(qū)間的增減性相同,奇函數(shù)在對稱區(qū)間的增減性相反;4、 奇函數(shù)在原點有定義時,必有. 三、判斷函數(shù)的奇偶性的方法 判斷函數(shù)的奇偶性的方法,一般有三種:定義法、和差判別法、作商判別法. 1、定義法 首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不

2、關于原點對稱,則函數(shù)一定是非奇非偶函數(shù);如果函數(shù)的定義域關于原點對稱,則繼續(xù)求;最后比較和的關系,如果有=,則函數(shù)是偶函數(shù),如果有=-,則函數(shù)是奇函數(shù),否則是非奇非偶函數(shù). 2、和差判別法 對于函數(shù)定義域內的任意一個,若,則是奇函數(shù);若,則是偶函數(shù). 3、 作商判別法 對于函數(shù)定義域內任意一個,設,若,則是奇函數(shù),,則是偶函數(shù). 【方法講評】 方法一 定義法 使用情景 具體函數(shù)和抽象函數(shù)都適用. 解題步驟 首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關于原點對稱,則函數(shù)一定是非奇非偶函數(shù);如果函數(shù)的定義域關于原點對稱,則繼續(xù)求;最后比較和的關系,如果有=,則函數(shù)是偶

3、函數(shù),如果有=-,則函數(shù)是奇函數(shù),否則是非奇非偶函數(shù). 【例1】判斷下列函數(shù)的奇偶性. (1) (2) 【點評】(1)判斷函數(shù)的奇偶性首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關于原點對稱,則函數(shù)是非奇非偶函數(shù). (2)函數(shù)的定義域關于原點對稱,是函數(shù)為奇偶函數(shù)的必要非充分條件.(3)函數(shù)的定義域求出來之后,還要注意在解題中應用,不是走一個過場和形式.第2小題就是利用求出的定義域對函數(shù)進行了化簡. 【例2】 定義在實數(shù)集上的函數(shù),對任意,有 且 ①求證: ②求證:是偶函數(shù) 【解析】證明:①令,則 ∵ ∴ ②令,則 ∴

4、 ∴是偶函數(shù) 【點評】對于抽象函數(shù)的奇偶性的判斷,和具體函數(shù)的判斷方法一樣,不同的是,由于它是抽象函數(shù),所以在判斷過程中,多要利用賦值法,常賦一些特殊值,如等. 【例3】判斷函數(shù)的奇偶性 【點評】(1)對于分段函數(shù)奇偶性的判斷,也是要先看函數(shù)的定義域,再考慮定義,由于它是分段函數(shù),所以要分類討論. (2)注意,當求要代入下面的解析式,因為,不是還代入上面一段的解析式. 【反饋檢測1】已知 (1)判斷的奇偶性; (2)求的值域. 【反饋檢測2】已知函數(shù)定義域為,若對于任意的,都有 ,且時,有. (1)證明函數(shù)是奇函數(shù);(2)討論

5、函數(shù)在區(qū)間上的單調性; (3)設,若,對所有,恒成立,求實數(shù)的取值范圍. 方法二 和差判別法 使用情景 一般與對數(shù)函數(shù)指數(shù)函數(shù)有關. 解答步驟 對于函數(shù)定義域內的任意一個,若,則是奇函數(shù);若,則是偶函數(shù). 【例4】判斷函數(shù)的奇偶性. 【點評】和差判別法實際上是奇偶函數(shù)定義的等價形式,但是利用定義判斷,計算較為復雜,利用和差判別法可以化繁為簡,簡捷高效. 【反饋檢測3】已知函數(shù). (1)求的定義域; (2)判定的奇偶性; (3)是否存在實數(shù),使得的定義域為時,值域為?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由. 【例5】判斷函數(shù)的奇偶性.

6、 【解析】由題得,因為 ,所以,所以是偶函數(shù). 【點評】和差判別法實際上是奇偶函數(shù)定義的等價形式,但是利用定義判斷,計算較為復雜,利用和差判別法可以化繁為簡,簡潔高效. 方法三 作商判別法 使用情景 一般含有指數(shù)函數(shù)運算. 解答步驟 對于函數(shù)定義域內任意一個,設,若,則是奇函數(shù),,則是偶函數(shù). 【例6】 證明函數(shù)是奇函數(shù). 【點評】作商判別法實際上是奇偶函數(shù)定義的等價形式,但是利用定義判斷,計算較為復雜,利用作商判別法可以化繁為簡,簡捷高效. 高中數(shù)學常見題型解法歸納及反饋檢測第07講: 函數(shù)的奇偶性的判斷和證明參考答案 【反饋檢測1答案

7、】(1)奇函數(shù);(2). 【反饋檢測2答案】(1)奇函數(shù);(2)單調遞增函數(shù);(3)或. 【反饋檢測2詳細解析】(1)因為有, 令,得,所以, 令可得: 所以,所以為奇函數(shù). (2)是定義在上的奇函數(shù),由題意設,則 由題意時,有, 是在上為單調遞增函數(shù); (3)因為在上為單調遞增函數(shù),所以在上的最大值為, 所以要使<,對所有恒成立, 只要,即, 令 由 得,或. 【反饋檢測3答案】(1)定義域為;(2)在定義域上為奇函數(shù);(3). 即是方程的兩個實根,于是問題轉化成關于的方程 上有兩個不同的實數(shù)解. 令 則有: 故存在這樣的實數(shù)符合題意.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!