歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

(浙江專版)2018年高考數(shù)學 第1部分 重點強化專題 專題1 三角函數(shù)與平面向量 突破點2 解三角形教學案

  • 資源ID:105584532       資源大?。?span id="f87b3oe" class="font-tahoma">206.50KB        全文頁數(shù):9頁
  • 資源格式: DOC        下載積分:18積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要18積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

(浙江專版)2018年高考數(shù)學 第1部分 重點強化專題 專題1 三角函數(shù)與平面向量 突破點2 解三角形教學案

突破點2解三角形 (對應學生用書第11頁)核心知識提煉提煉1常見解三角形的題型及解法(1)已知兩角及一邊,利用正弦定理求解(2)已知兩邊及一邊的對角,利用正弦定理或余弦定理求解,解的情況可能不唯一(3)已知兩邊及其夾角,利用余弦定理求解(4)已知三邊,利用余弦定理求解.提煉2三角形形狀的判斷(1)從邊出發(fā),全部轉(zhuǎn)化為邊之間的關(guān)系進行判斷(2)從角出發(fā),全部轉(zhuǎn)化為角之間的關(guān)系,然后進行恒等變形,再判斷注意:要靈活選用正弦定理或余弦定理,且在變形的時候要注意方程的同解性,如方程兩邊同除以一個數(shù)時要注意該數(shù)是否為零,避免漏解.提煉3三角形的常用面積公式設ABC的內(nèi)角A,B,C的對邊分別為a,b,c ,其面積為S.(1)Sahabhbchc(ha,hb,hc分別表示a,b,c邊上的高)(2)Sabsin Cbcsin Acasin B.(3)Sr(abc)(r為三角形ABC內(nèi)切圓的半徑)高考真題回訪回訪1正、余弦定理的應用1(2017·浙江高考)已知ABC,ABAC4,BC2.點D為AB延長線上一點,BD2,連接CD,則BDC的面積是_,cosBDC_.依題意作出圖形,如圖所示,則sinDBCsinABC.由題意知ABAC4,BCBD2,則sinABC,cosABC.所以SBDCBC·BD·sinDBC×2×2×.因為cosDBCcosABC,所以CD.由余弦定理,得cosBDC.2(2013·浙江高考)在ABC中,C90°,M是BC的中點若sinBAM,則sinBAC_.因為sinBAM,所以cosBAM.如圖,在ABM中,利用正弦定理,得,所以.在RtACM中,有sinCAMsin(BACBAM)由題意知BMCM,所以sin(BACBAM)化簡,得2sinBACcosBACcos2BAC1.所以1,解得tanBAC.再結(jié)合sin2BACcos2BAC1,BAC為銳角可解得sinBAC.3(2016·浙江高考)在ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知bc2acos B.(1)證明:A2B;(2)若ABC的面積S,求角A的大小 【導學號:68334039】解(1)證明:由正弦定理得sin Bsin C2sin Acos B,故2sin Acos Bsin Bsin(AB)sin Bsin Acos Bcos Asin B,于是sin Bsin(AB).3分又A,B(0,),故0<AB<,所以B(AB)或BAB,因此A(舍去)或A2B,所以A2B.6分(2)由S得absin C,故有sin Bsin Csin Asin 2Bsin Bcos B.因為sin B0,所以sin Ccos B8分又B,C(0,),所以C±B.11分當BC時,A;當CB時,A.綜上,A或A.14分回訪2三角形的面積問題4(2015·浙江高考)在ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知tan2.(1)求的值;(2)若B,a3,求ABC的面積解(1)由tan2,得tan A,2分所以.5分(2)由tan A,A(0,),得sin A,cos A.8分由a3,B及正弦定理,得b3.10分由sin Csin(AB)sin,得sin C.12分設ABC的面積為S,則Sabsin C9.14分5(2015·浙江高考)在ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知A,b2a2c2.(1)求tan C的值;(2)若ABC的面積為3,求b的值解(1)由b2a2c2及正弦定理得sin2Bsin2C,所以cos 2Bsin2C.2分又由A,即BC,得cos 2Bsin 2C2sin Ccos C,解得tan C2.5分(2)由tan C2,C(0,),得sin C,cos C.8分因為sin Bsin(AC)sin,所以sin B.10分由正弦定理得c,12分又因為A,bcsin A3,所以bc6,故b3.14分6(2014·浙江高考)在ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知ab,c,cos2Acos2Bsin Acos Asin Bcos B.(1)求角C的大?。?2)若sin A,求ABC的面積. 【導學號:68334040】解(1)由題意得sin 2Asin 2B,即sin 2Acos 2Asin 2Bcos 2B,2分sinsin.由ab,得AB.又AB(0,),得2A2B,即AB,所以C.5分(2)由c,sin A,得a.8分由a<c得,A<C,從而cos A,故sin Bsin(AC)sin Acos Ccos Asin C,11分所以,ABC的面積為Sacsin B.14分 (對應學生用書第12頁)熱點題型1正、余弦定理的應用題型分析:利用正、余弦定理解題是歷年高考的熱點,也是必考點,求解的關(guān)鍵是合理應用正、余弦定理實現(xiàn)邊角的互化.【例1】在ABC中,角A,B,C所對的邊分別是a,b,c,且.(1)證明:sin Asin Bsin C;(2)若b2c2a2bc,求tan B.解(1)證明:根據(jù)正弦定理,可設k(k>0)則aksin A,bksin B,cksin C,代入中,有,2分即sin Asin Bsin Acos Bcos Asin Bsin(AB).4分在ABC中,由ABC,有sin(AB)sin(C)sin C,所以sin Asin Bsin C6分(2)由已知,b2c2a2bc,根據(jù)余弦定理,有cos A,8分所以sin A.9分由(1)知sin Asin Bsin Acos Bcos Asin B,所以sin Bcos B sin B,12分故tan B4.14分方法指津關(guān)于解三角形問題,一般要用到三角形的內(nèi)角和定理,正、余弦定理及有關(guān)三角形的性質(zhì),常見的三角變換方法和原則都適用,同時要注意“三統(tǒng)一”,即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)”,這是使問題獲得解決的突破口變式訓練1(1)(2017·溫州市普通高中高考模擬考試)在ABC中,內(nèi)角A,B,C所對的邊長分別為a,b,c,記S為ABC的面積若A60°,b1,S,則c_,cos B_. 【導學號:68334041】3因為Sbcsin A×1×c×,所以c3;由余弦定理,得a2b2c22bccos A196×7,所以cos B.(2)在ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且acos Bbcos(BC)0.證明:ABC為等腰三角形;若2(b2c2a2)bc,求cos Bcos C的值解證明:acos Bbcos (BC)0,由正弦定理得sin Acos Bsin Bcos(A)0,即sin Acos Bsin Bcos A0,3分sin(AB)0,ABk,kZ.4分A,B是ABC的兩內(nèi)角,AB0,即AB,5分ABC是等腰三角形.6分由2(b2c2a2)bc,得,7分由余弦定理得cos A,8分cos Ccos(2A)cos 2A12cos2 A.10分AB,cos Bcos A,12分cos Bcos C.14分熱點題型2三角形面積的求解問題題型分析:三角形面積的計算及與三角形面積有關(guān)的最值問題是解三角形的重要命題點之一,本質(zhì)上還是考查利用正、余弦定理解三角形,難度中等.【例2】設f(x)sin xcos xcos2.(1)求f(x)的單調(diào)區(qū)間;(2)在銳角ABC中,角A,B,C的對邊分別為a,b,c.若f0,a1,求ABC面積的最大值【解題指導】(1)(2)解(1)由題意知f(x)sin 2x.2分由2k2x2k,kZ,可得kxk,kZ.由2k2x2k,kZ,可得kxk,kZ.4分所以f(x)的單調(diào)遞增區(qū)間是k,k(kZ);單調(diào)遞減區(qū)間是(kZ).6分(2)由fsin A0,得sin A,7分由題意知A為銳角,所以cos A.8分由余弦定理a2b2c22bccos A,可得1bcb2c22bc,12分即bc2,當且僅當bc時等號成立因此bcsin A,所以ABC面積的最大值為.14分方法指津1在研究三角函數(shù)的圖象與性質(zhì)時常先將函數(shù)的解析式利用三角恒等變換轉(zhuǎn)化為yAsin(x)B(或yAcos(x)B,yAtan(x)B)的形式,進而利用函數(shù)ysin x(或ycos x,ytan x)的圖象與性質(zhì)解決問題2在三角形中,正、余弦定理可以實現(xiàn)邊角互化,尤其在余弦定理a2b2c22bccos A中,有a2c2和ac兩項,二者的關(guān)系a2c2(ac)22ac經(jīng)常用到,有時還可利用基本不等式求最值變式訓練2(名師押題)在ABC中,角A,B,C的對邊分別為a,b,c,a4cos C,b1.(1)若sin C,求a,c;(2)若ABC是直角三角形,求ABC的面積解(1)sin C,cos2C1sin2C,cos C.1分4cos Ca,a,解得a或a.3分又a4cos C4×4×,a212(a21c2),即2c2a21.5分當a時,c2;當a時,c.6分(2)由(1)可知2c2a21.又ABC為直角三角形,C不可能為直角若角A為直角,則a2b2c2c21,2c21c21,c,a,8分Sbc×1×.9分若角B為直角,則b2a2c2,a2c21.2c2a21(1c2)1,c2,a2,即c,a,12分Sac××.14分9

注意事項

本文((浙江專版)2018年高考數(shù)學 第1部分 重點強化專題 專題1 三角函數(shù)與平面向量 突破點2 解三角形教學案)為本站會員(彩***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!