《2022高考數(shù)學(xué)”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練4 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練4 文(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022高考數(shù)學(xué)”一本“培養(yǎng)優(yōu)選練 中檔大題規(guī)范練4 文
(教師備選)
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為2,且a1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.
[解] (1)由a1,S2,S4成等比數(shù)列得S=a1S4.
化簡得(2a1+d)2=a1(4a1+6d),
又d=2,解得a1=1,
故數(shù)列{an}的通項(xiàng)公式an=1+2(n-1)=2n-1(n∈N*).
(2)由(1)得bn==-,
∴Tn=+++…+=1-=.
1.設(shè)函數(shù)f(x)=cos-2sin xcos x.
(1)求f
2、(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,若AB=4,f=,求△ABC的外接圓的面積.
[解] (1)f(x)=cos-sin 2x=cos 2x+sin 2x-sin 2x=sin,
令2kπ+≤2x+≤2kπ+,解得kπ-≤x≤kπ+,k∈Z ,
單調(diào)遞減區(qū)間為, k∈Z.
(2)sin=,C+= ,C= ,
外接圓直徑2r==8,r=4,外接圓面積S=16π.
2.如圖65,在直三棱柱ABC-A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點(diǎn).
圖65
(1)求證:MN∥平面ACC1A1;
(2)求點(diǎn)N到平面MBC的距離.
3、
[解] (1)證明:連接AC1,AB1(圖略),
因?yàn)樵撊庵侵比庵?,∴AA1⊥A1B1,則四邊形ABB1A1為矩形,
由矩形性質(zhì)得AB1過A1B的中點(diǎn)M,
在△AB1C1中,由中位線性質(zhì)得MN∥AC1,
又MN?平面ACC1A1,AC1?平面ACC1A1,
∴MN∥平面ACC1A1.
(2)∵BC=3,AB=4,AC=CC1=5,∴AB⊥BC,
∴S△NBC=×BC×BB1=×3×5=,
∴S△MBC=×BC×BM=×3×=,
又點(diǎn)M到平面BCN的距離為h′=AB=2,設(shè)點(diǎn)N與平面MBC的距離為h,
由V三棱錐M-NBC=V三棱錐N-MBC可得S△NBC·h′=S
4、△MBC·h,
即××2=××h,
解得h=,即點(diǎn)N到平面MBC的距離為.
(教師備選)
隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在A市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):
經(jīng)常使用
偶爾或不用
合計(jì)
30歲及以下
70
30
100
30歲以上
60
40
100
合計(jì)
130
70
200
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為A市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的3
5、0歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
① 分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
② 從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式:K2=,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
k0
2.072
2.706
3.841
5.024
6.635
[解] (1)由列聯(lián)表可知,
K2=≈2.198.
∵2.198>2.072,
∴能在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為A市使用共享單車情況與年齡有關(guān).
(2)①
6、 依題意可知,所抽取的5名30歲以上的網(wǎng)友中,
經(jīng)常使用共享單車的有5×=3(人),
偶爾或不用共享單車的有5×=2(人).
②設(shè)這5人中,經(jīng)常使用共享單車的3人分別為a,b,c;偶爾或不用共享單車的2人分別為d,e,則從5人中選出2人的所有可能結(jié)果為
(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),共10種.
其中沒有1人經(jīng)常使用共享單車的可能結(jié)果為(d,e),共1種.
故選出的2人中至少有1人經(jīng)常使用共享單車的概率P=1-=.
3.某基地蔬菜大棚采用無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周
7、光照量X(單位:小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的有5周,不低于50小時(shí)且不超過70小時(shí)的有35周,超過70小時(shí)的有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量y(千克)與使用某種液體肥料的質(zhì)量x(千克)之間的對(duì)應(yīng)數(shù)據(jù)為如圖66所示的折線圖.
圖66
(1)依據(jù)折線圖計(jì)算相關(guān)系數(shù)r(精確到0.01),并據(jù)此判斷是否可用線性回歸模型擬合y與x的關(guān)系.(若|r|>0.75,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對(duì)光照要求較高,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運(yùn)行臺(tái)數(shù)受周光照量X限制,并有如下關(guān)系:
周光照量X/小時(shí)
30<X<50
8、
50≤X≤70
x>70
光照控制儀運(yùn)行臺(tái)數(shù)
3
2
1
對(duì)商家來說,若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀產(chǎn)生的周利潤為3 000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1 000元.若商家安裝了3臺(tái)光照控制儀,求商家在過去50周的周總利潤的平均值.
相關(guān)系數(shù)公式:
參考數(shù)據(jù):≈0.55,≈0.95.
[解] (1)由已知數(shù)據(jù)可得==5,==4.
因?yàn)?(xi-)(yi-)=(-3)×(-1)+0+0+0+3×1=6,
所以相關(guān)系數(shù)=≈0.95.
因?yàn)閨r|>0.75,所以可用線性回歸模型擬合y與x的關(guān)系.
(2)由條件可得在過去50周里,
當(dāng)X>
9、70時(shí),共有10周,此時(shí)只有1臺(tái)光照控制儀運(yùn)行,
每周的周總利潤為1×3 000-2×1 000=1 000(元).
當(dāng)50≤X≤70時(shí),共有35周,此時(shí)有2臺(tái)光照控制儀運(yùn)行,
每周的周總利潤為2×3 000-1×1 000=5 000(元).
當(dāng)30<X<50時(shí),共有5周,此時(shí)3臺(tái)光照控制儀都運(yùn)行,
每周的周總利潤為3×3 000=9 000(元).
所以過去50周的周總利潤的平均值為=4 600(元).
所以商家在過去50周的周總利潤的平均值為4 600元.
4.[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),0≤α<π).以坐標(biāo)
10、原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:ρcos2θ=4sin θ.
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于不同的兩點(diǎn)A,B,若|AB|=8,求α的值.
[解] (1)直線l普通方程為x·sin α-y·cos α+cos α=0,曲線C的極坐標(biāo)方程為ρcos2θ=4sin θ,∵ρcos θ=x,ρsin θ=y(tǒng),則ρ2cos2θ=4ρsin θ,
∴x2=4y即為曲線C的普通方程.
(2)將(t為參數(shù),0≤α<π)代入曲線C:x2=4y,
∴t2·cos2α-4t·sin α-4=0,∴t1+t2=,t1·t2=,
|AB|=|t1-t2|===8,
∴cos α=±,∴α=或.
[選修4-5:不等式選講]
已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x-b|的最小值為1.
(1)證明:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.
[解] (1)證明:∵-a<,
∴f(x)=,顯然f(x)在上單調(diào)遞減,在上單調(diào)遞增,所以f(x)的最小值為f=a+=1,即2a+b=2.
(2)因?yàn)閍+2b≥tab恒成立,所以≥t恒成立,
≥+=(2a+b)=5++≥,
當(dāng)且僅當(dāng)a=b=時(shí),取得最小值,
所以t≤,即實(shí)數(shù)t的最大值為.