(江蘇專(zhuān)版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 知識(shí)專(zhuān)題突破 專(zhuān)題7 不等式學(xué)案

上傳人:彩*** 文檔編號(hào):106587334 上傳時(shí)間:2022-06-13 格式:DOC 頁(yè)數(shù):11 大?。?86KB
收藏 版權(quán)申訴 舉報(bào) 下載
(江蘇專(zhuān)版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 知識(shí)專(zhuān)題突破 專(zhuān)題7 不等式學(xué)案_第1頁(yè)
第1頁(yè) / 共11頁(yè)
(江蘇專(zhuān)版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 知識(shí)專(zhuān)題突破 專(zhuān)題7 不等式學(xué)案_第2頁(yè)
第2頁(yè) / 共11頁(yè)
(江蘇專(zhuān)版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 知識(shí)專(zhuān)題突破 專(zhuān)題7 不等式學(xué)案_第3頁(yè)
第3頁(yè) / 共11頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《(江蘇專(zhuān)版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 知識(shí)專(zhuān)題突破 專(zhuān)題7 不等式學(xué)案》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(江蘇專(zhuān)版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 知識(shí)專(zhuān)題突破 專(zhuān)題7 不等式學(xué)案(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 專(zhuān)題七 不等式 ———————命題觀察·高考定位——————— (對(duì)應(yīng)學(xué)生用書(shū)第28頁(yè)) 1.(2016·江蘇高考)已知實(shí)數(shù)x,y滿(mǎn)足則x2+y2的取值范圍是________.  [根據(jù)已知的不等式組畫(huà)出可行域,如圖陰影部分所示,則(x,y)為陰影區(qū)域內(nèi)的動(dòng)點(diǎn).d=可以看做坐標(biāo)原點(diǎn)O與可行域內(nèi)的點(diǎn)(x,y)之間的距離.?dāng)?shù)形結(jié)合,知d的最大值是OA的長(zhǎng),d的最小值是點(diǎn)O到直線(xiàn)2x+y-2=0的距離.由可得A(2,3), 所以dmax==,dmin==.所以d2的最小值為,最大值為13.所以x2+y2的取值范圍是.] 2.(2015·江蘇高考)不等式2x2-x<4的解集為_(kāi)__

2、___. {x|-1<x<2} [∵2x2-x<4,∴2x2-x<22,∴x2-x<2,即x2-x-2<0,∴-1<x<2.] 3.(2014·江蘇高考)已知函數(shù)f (x)=x2+mx-1,若對(duì)于任意x∈[m,m+1],都有f (x)<0成立,則實(shí)數(shù)m的取值范圍是________. 【導(dǎo)學(xué)號(hào):56394045】  [作出二次函數(shù)f (x)的圖象,對(duì)于任意x∈[m,m+1],都有f (x)<0, 則有 即 解得-

3、方法,而且注重考查邏輯思維能力、運(yùn)算能力以及分析問(wèn)題和解決問(wèn)題的能力. 在題型上,填空題主要考查不等式的性質(zhì)、解簡(jiǎn)單不等式、簡(jiǎn)單線(xiàn)性規(guī)劃的應(yīng)用、絕對(duì)值不等式、簡(jiǎn)單轉(zhuǎn)化求參數(shù)范圍、比較大小等;解答題主要考查基本不等式的應(yīng)用、含參不等式的解法、求恒成立中的參數(shù)范圍、證明不等式、最值型綜合題以及實(shí)際應(yīng)用題等. 試題常常是寓不等式的證明、解不等式、求參數(shù)范圍于函數(shù)、數(shù)列、復(fù)數(shù)、三角、解析幾何、立體幾何、實(shí)際應(yīng)用等問(wèn)題之中, 知識(shí)覆蓋面廣、綜合性強(qiáng)、思維力度大、能力要求高, 是高考數(shù)學(xué)思想、數(shù)學(xué)方法、考能力、考素質(zhì)的主陣地. 從近幾年數(shù)學(xué)試題得到啟示:涉及不等式解法的題目,往往較為容易;對(duì)簡(jiǎn)單線(xiàn)性規(guī)劃的

4、應(yīng)用的考查,不但具有連續(xù)性,而且其題型規(guī)律易于把握;對(duì)基本不等式的考查,較多的寓于綜合題目之中. 通過(guò)第二輪的專(zhuān)題復(fù)習(xí),應(yīng)注意在鞏固基礎(chǔ)知識(shí)、基本方法的基礎(chǔ)上,強(qiáng)化記憶,熟化常見(jiàn)題型的解法,提升綜合應(yīng)用不等式解題的能力. ———————主干整合·歸納拓展——————— (對(duì)應(yīng)學(xué)生用書(shū)第28頁(yè)) [第1步▕ 核心知識(shí)再整合] 1.在證明不等式的各種方法中,作差比較法是一種最基本、最重要的方法,它是利用不等式兩邊的差是正數(shù)還是負(fù)數(shù)來(lái)證明不等式,其應(yīng)用非常廣泛,一定要熟練掌握. 2.解不等式的過(guò)程,實(shí)質(zhì)上是不等式等價(jià)轉(zhuǎn)化的過(guò)程.因此在學(xué)習(xí)中理解保持同解變形是解不等式應(yīng)遵循的基本原則.

5、轉(zhuǎn)化的方法是: 超越式、分式、整式(高次)、整式(低次)、一次(或二次)不等式.其中準(zhǔn)確熟練求解一元二次(一次)不等式是解其他不等式的基礎(chǔ),這體現(xiàn)了轉(zhuǎn)化與化歸的數(shù)學(xué)思想. 3.對(duì)于公式a+b≥2,ab≤2,要理解它們的作用和使用條件及內(nèi)在聯(lián)系,兩個(gè)公式也體現(xiàn)了ab和a+b的轉(zhuǎn)化關(guān)系. 4.在應(yīng)用均值定理求最值時(shí),要把握定理成立的三個(gè)條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號(hào)能否取得”.若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤. 5.平面區(qū)域的確定方法是“直線(xiàn)定界,特殊點(diǎn)定域”,二元一次不等式組所表示的平面區(qū)域是各個(gè)不等式所表示的半平面的交集.確定平面區(qū)域中單個(gè)變量的范圍、

6、整點(diǎn)個(gè)數(shù)等,只需把區(qū)域畫(huà)出來(lái),結(jié)合圖形通過(guò)計(jì)算解決. 線(xiàn)性目標(biāo)函數(shù)z=ax+by中的z不是直線(xiàn)ax+by=z在y軸上的截距,把目標(biāo)函數(shù)化為y=-x+可知是直線(xiàn)ax+by=z在y軸上的截距,要根據(jù)b的符號(hào)確定目標(biāo)函數(shù)在什么情況下取得最大值、什么情況下取得最小值. 6.含有絕對(duì)值的不等式常用的方法是:(1)由定義分段討論;(2)利用絕對(duì)值不等式的性質(zhì);(3)平方;(4)利用絕對(duì)值的幾何意義. [第2步▕ 高頻考點(diǎn)細(xì)突破] 簡(jiǎn)單線(xiàn)性規(guī)劃的應(yīng)用 【例1】 (江蘇省泰州中學(xué)2017屆高三摸底考試)已知實(shí)數(shù)x,y滿(mǎn)足 若不等式a(x2+y2)≥(x+y)2恒成立,則實(shí)數(shù)a的最小值是_____

7、___. [解析] 可行域?yàn)橐粋€(gè)三角形ABC及其內(nèi)部(圖略),其中A(2,4),B(1,4),C,因此∈[kOA,kOB]=[2,4],因?yàn)椋赱2,4]上單調(diào)遞增,所以+∈,不等式a(x2+y2)≥(x+y)2恒成立等價(jià)于a≥max=max=?amin=. [答案]  [規(guī)律方法] 這是簡(jiǎn)單線(xiàn)性規(guī)劃的應(yīng)用的基本題型.基本思路是:畫(huà)、移、解、代.技巧是:往往在“角點(diǎn)”處取得最值,直接代入點(diǎn)的坐標(biāo)即可,關(guān)鍵點(diǎn)是理解目標(biāo)函數(shù)的幾何意義. [舉一反三] (2017·江蘇省泰州市高考數(shù)學(xué)一模)若實(shí)數(shù)x,y滿(mǎn)足則z=3x+2y的最大值為_(kāi)_______. 7 [作出不等式組對(duì)應(yīng)的平面區(qū)域如圖

8、:(陰影部分). 由z=3x+2y得y=-x+z, 平移直線(xiàn)y=-x+z, 由圖象可知當(dāng)直線(xiàn)y=-x+z經(jīng)過(guò)點(diǎn)A時(shí),直線(xiàn)y=-x+z的截距最大, 此時(shí)z最大. 由 解得A(1,2), 代入目標(biāo)函數(shù)z=3x+2y得z=3×1+2×2=7. 即目標(biāo)函數(shù)z=3x+2y的最大值為7.] 簡(jiǎn)單線(xiàn)性規(guī)劃“逆向”問(wèn)題,確定參數(shù)的取值(范圍) 【例2】 (無(wú)錫市普通高中2017屆高三上學(xué)期期中基礎(chǔ)性檢測(cè))已知x,y滿(mǎn)足 ,若z=3x+y的最大值為M,最小值為m,且M+m=0,則實(shí)數(shù)a的值為_(kāi)_______. [解析] 畫(huà)出不等式組表示的區(qū)域如圖,結(jié)合圖形可以看出當(dāng)動(dòng)直線(xiàn)y=-

9、3x+z經(jīng)過(guò)點(diǎn)A(a,a)和B(1,1)時(shí),z=3x+y分別取最小值m=4a和最大值m=4,由題設(shè)可得4a+4=0,所以a=-1. [答案]?。? [規(guī)律方法] 嘗試畫(huà)出“可行域”,通過(guò)平移直線(xiàn)確認(rèn)“最優(yōu)解”,建立參數(shù)的方程. [舉一反三] 實(shí)數(shù)x,y滿(mǎn)足 如果目標(biāo)函數(shù)z=x-y的最小值為-2,則實(shí)數(shù)m的值為_(kāi)_______. 【導(dǎo)學(xué)號(hào):56394046】 8 [如圖,約束條件表示的可行域應(yīng)該是△ABC內(nèi)部(含邊界)(否則可行域不存在),作直線(xiàn)l:x-y=0,當(dāng)把直線(xiàn)l向上平移時(shí),z減小,因此其最小值點(diǎn)是直線(xiàn)y=2x-1與直線(xiàn)x+y=m的交點(diǎn),由得B(3,5),代入x+y=m

10、得m=8.] 基本不等式的應(yīng)用 【例3】 (2016-2017學(xué)年度江蘇蘇州市高三期中調(diào)研考試)若函數(shù)y=tan θ+,則函數(shù)y的最小值為_(kāi)_______. [解析] ∵θ∈,∴tan θ>0. y=tan θ+=tan θ+=tan θ+≥2=2,當(dāng)且僅當(dāng)tan θ=1時(shí)取等號(hào).因此y的最小值為2. [答案] 2 [規(guī)律方法] 應(yīng)用基本不等式,應(yīng)注意“一正、二定、三相等”,缺一不可.靈活的通過(guò)“拆、湊、代(換)”,創(chuàng)造應(yīng)用不等式的條件,是解答此類(lèi)問(wèn)題的技巧;忽視等號(hào)成立的條件,是常見(jiàn)錯(cuò)誤之一. [舉一反三] (蘇北四市(淮安、宿遷、連云港、徐州)2017屆高三上學(xué)期期

11、中)已知正數(shù)a,b滿(mǎn)足+=-5,則ab的最小值為_(kāi)_______. 36 [+=-5?-5≥2?()2-5-6≥0?≥6?ab≥36,當(dāng)且僅當(dāng)b=9a時(shí)取等號(hào),因此ab的最小值為36.] 不等式的綜合應(yīng)用 【例4】 (泰州中學(xué)2016-2017年度第一學(xué)期第一次質(zhì)量檢測(cè))已知二次函數(shù)f (x)=mx2-2x-3,關(guān)于實(shí)數(shù)x的不等式f (x)≤0的解集為. (1)當(dāng)a>0時(shí),解關(guān)于x的不等式:ax2+n+1>(m+1)x+2ax; (2)是否存在實(shí)數(shù)a∈(0,1),使得關(guān)于x的函數(shù)y=f (ax)-3ax+1(x∈[1,2])的最小值為-5?若存在,求實(shí)數(shù)a的值;若不存在,說(shuō)明理由

12、. [解] (1)由不等式mx2-2x-3≤0的解集為知,關(guān)于x的方程mx2-2x-3=0的兩根為-1和n,且m>0, 由根與系數(shù)關(guān)系,得 ∴ 所以原不等式化為(x-2)(ax-2)>0, ①當(dāng)00,且2<,解得x>或x<2; ②當(dāng)a=1時(shí),原不等式化為(x-2)2>0,解得x∈R且x≠2; ③當(dāng)a>1時(shí),原不等式化為(x-2)>0,且2>,解得x<或x>2; 綜上所述: 當(dāng)01時(shí),原不等式的解集為. (2)假設(shè)存在滿(mǎn)足條件的實(shí)數(shù)a, 由

13、(1)得:m=1,f (x)=x2-2x-3, y=f (ax)-3ax+1=a2x-(3a+2)ax-3. 令ax=t(a2≤t≤a),則y=t2-(3a+2)t-3(a2≤t≤a), 對(duì)稱(chēng)軸t=, 因?yàn)閍∈(0,1),所以a2

14、 [舉一反三] (泰州中學(xué)2016-2017年度第一學(xué)期第一次質(zhì)量檢測(cè)文科)已知函數(shù)f (x)=|x-1|,g(x)=-x2+6x-5(x∈R). (1)若g(x)≥f (x),求x的取值范圍; (2)求g(x)-f (x)的最大值. 【導(dǎo)學(xué)號(hào):56394047】 [解] (1)當(dāng)x≥1時(shí),f (x)=x-1, 由g(x)≥f (x),得-x2+6x-5≥x-1, 整理得(x-1)(x-4)≤0,所以x∈[1,4]; 當(dāng)x<1時(shí),f (x)=1-x, 由g(x)≥f (x),得-x2+6x-5≥1-x, 整理得(x-1)(x-6)≤0,所以x∈[1,6],由 ,得x∈?

15、, 綜上x(chóng)的取值范圍是[1,4]. (2)由(1)知,g(x)-f (x)的最大值必在[1,4]上取到, 所以g(x)-f (x)=-x2+6x-5-(x-1)=-2+≤, 所以當(dāng)x=時(shí),g(x)-f (x)取到最大值為. [第3步▕ 高考易錯(cuò)明辨析] 1.簡(jiǎn)單線(xiàn)性規(guī)劃問(wèn)題,擴(kuò)大(縮小)可行域的范圍 已知1≤x-y≤2且2≤x+y≤4求4x-2y的范圍. [錯(cuò)解] 由于1≤x-y≤2,① 2≤x+y≤4;② ①+②得3≤2x≤6,③ ①×(-1)+③得0≤2y≤3,④ ③×2+④×(-1)得3≤4x-2y≤12. [錯(cuò)解分析] 可行域范圍擴(kuò)大了. [正解] 線(xiàn)性

16、約束條件是: 令z=4x-2y, 畫(huà)出可行域如圖所示, 由 得A點(diǎn)坐標(biāo)(1.5,0.5),此時(shí)z=4×1.5-2×0.5=5. 由 得B點(diǎn)坐標(biāo)(3,1),此時(shí)z=4×3-2×1=10. ∴5≤4x-2y≤10. 2.簡(jiǎn)單線(xiàn)性規(guī)劃問(wèn)題,理解題意錯(cuò)誤 已知求x2+y2的最值. [錯(cuò)解] 不等式組表示的平面區(qū)域如圖所示△ABC的內(nèi)部(包括邊界), 令z=x2+y2, 由得A點(diǎn)坐標(biāo)(4,1), 此時(shí)z= x2+y2=42+12=17, 由得B點(diǎn)坐標(biāo)(-1,-6), 此時(shí)z= x2+y2=(-1)2+(-6)2=37, 由得C點(diǎn)坐標(biāo)(-3,2), 此時(shí)z= x2+y

17、2=(-3)2+22=13, ∴當(dāng)時(shí),x2+y2取得最大值37,當(dāng)時(shí),x2+y2取得最小值13. [錯(cuò)解分析] 誤將求可行域內(nèi)的點(diǎn)到原點(diǎn)的距離的平方的最值誤認(rèn)為是求三點(diǎn)A,B,C到原點(diǎn)的距離的平方的最值. [正解] 不等式組表示的平面區(qū)域如圖所示△ABC的內(nèi)部(包括邊界), 令z=x2+y2,則z即為點(diǎn)(x,y)到原點(diǎn)的距離的平方. 由得A點(diǎn)坐標(biāo)(4,1), 此時(shí)z=x2+y2=42+12=17, 由得B點(diǎn)坐標(biāo)(-1,-6), 此時(shí)z=x2+y2=(-1)2+(-6)2=37, 由得C點(diǎn)坐標(biāo)(-3,2), 此時(shí)z=x2+y2=(-3)2+22=13, 而在原點(diǎn)處,

18、此時(shí)z=x2+y2=02+02=0, ∴當(dāng)時(shí),x2+y2取得最大值37,當(dāng)時(shí),x2+y2取得最小值0. 3.應(yīng)用基本不等式,忽視等號(hào)成立的條件 已知:a>0,b>0,a+b=1,求2+2的最小值. [錯(cuò)解]  2+2=a2+b2+++4≥2ab++4≥4+4=8,所以,2+2的最小值是8. [錯(cuò)解分析] 上面的解答中,兩次用到了基本不等式a2+b2≥2ab,第一次等號(hào)成立的條件是a=b=,第二次等號(hào)成立的條件是ab=,顯然,這兩個(gè)條件是不能同時(shí)成立的.因此,8不是最小值. [正解] 2+2=a2+b2+++4=[(a+b)2-2ab]+4=(1-2ab)+4,由ab≤2=, 得1-

19、2ab≥1-=, 且≥16, 1+≥17,∴原式≥×17+4= (當(dāng)且僅當(dāng)a=b=時(shí),等號(hào)成立), 所以,2+2的最小值是. ———————專(zhuān)家預(yù)測(cè)·鞏固提升——————— (對(duì)應(yīng)學(xué)生用書(shū)第31頁(yè)) 1.已知正實(shí)數(shù)x,y滿(mǎn)足x++3y+=10,則xy的取值范圍為_(kāi)_______.  [設(shè)xy=t,則y=,所以10=x++3y+=x+++=x+≥2. 即3t2-11t+8≤0,解之得1≤t≤.] 2.已知函數(shù)的定義域是[-2,+∞)且f (4)=f (-2)=1, f ′(x)為f (x)的導(dǎo)函數(shù),且f ′(x)的圖象如圖7-1所示,則不等式組 所圍成的平面區(qū)域的面積是______

20、__. 【導(dǎo)學(xué)號(hào):56394048】 圖7-1 4 [由導(dǎo)函數(shù)的圖象得到f (x)在[-2,0]遞減; 在[0,+∞)遞增,∵f (4)=f (-2)=1, ∴f (2x+y)≤1,-2≤2x+y≤4, ∴? 表示的平面區(qū)域如下: 所以平面區(qū)域的面積為×2×4=4.] 3.已知函數(shù)f (x)的定義域是[-3,+∞)且f (6)=2,f ′(x)為f (x)的導(dǎo)函數(shù),f ′(x)的圖象如圖7-2所示,若正數(shù)a,b滿(mǎn)足f (2a+b)<2,則的取值范圍是________. 圖7-2 ∪ [如圖所示:f ′(x)≥0在[0,+∞)上恒成立, ∴函數(shù)f (x)在[-3,0)是減函數(shù),(0,+∞)上是增函數(shù), 又∵f (2a+b)<2=f (6), ∴ 畫(huà)出平面區(qū)域 令t=表示過(guò)定點(diǎn)(2,-3)的直線(xiàn)的斜率, 如圖所示:t∈∪.] 4.已知x,y滿(mǎn)足約束條件則x2+4y2的最小值是________.  [設(shè)x2+4y2=z(z>0)?+=1,這個(gè)橢圓與可行域有公共點(diǎn),只需它與線(xiàn)段x+y=1(0≤x≤1)有公共點(diǎn),把y=1-x代入橢圓方程得5x2-8x+4-z=0,由判別式Δ=64-4×5(4-z)≥0得z≥,且x=∈[0,1]時(shí),z=.] 11

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!